Your Selections

Brake discs
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

 

Braking Performance - Rubber-Tired, Self-Propelled Cranes

Cranes and Lifting Devices Committee
  • Ground Vehicle Standard
  • J1977_201902
  • Current
Published 2019-02-27 by SAE International in United States
This SAE Standard applies to machines as defined in Appendix A. Some of these machines can travel on-highway, but function primarily off-highway.
Datasets icon
Annotation icon
 

Maintainability Recommendations for Aircraft Wheel and Hydraulically Actuated Brake Design

A-5A Wheels, Brakes and Skid Controls Committee
  • Aerospace Standard
  • ARP813C
  • Current
Published 2019-02-15 by SAE International in United States
This SAE Aerospace Recommended Practice (ARP) recommends the maintainability features which should be considered in the design of aircraft wheels and brakes. The effect on other factors, such as, cost, weight, reliability, and compatibility with other systems should be weighed before the incorporation of any of these maintainability features into the design.
Datasets icon
Annotation icon
 

Off-Vehicle Brake Testing for Service Brakes Over 10000 Pounds GVW Air, Hydraulic, and Mechanical Actuation

Truck and Bus Brake Systems Committee
  • Ground Vehicle Standard
  • J2806_201901
  • Current
Published 2019-01-14 by SAE International in United States
Subject document is specifically intended for service brakes and service brakes when used for parking and/or emergency brakes (only) that are commonly used for automotive-type, ground-wheeled vehicles exceeding 4536 kg (10000 pounds) gross vehicle weight rating (GVWR). Subject specification provides the off-vehicle procedures, methods, and processes used to objectively determine suitability of tactical and combat ground-wheeled vehicle brake systems and selected secondary-item brake components (aka, aftermarket or spare parts), including brake “block” for commercial applications only, specifically identified within subject document. Subject specification is primarily based on known industry and military test standards utilizing brake inertia dynamometers. Targeted vehicles and components include, but may not be limited to, the following: a Civilian, commercial, military, and militarized-commercial ground-wheeled vehicles such cargo trucks, vocational vehicles, truck tractors, trailers, and specialized support and engineering equipment under the generic heading of ground vehicle “dry” brake systems (GVDBS). b Hydraulic, air, and mechanical “dry” disc brake and drum brake systems, when used as service brakes, including service brakes (only), when used as emergency and/or parking brakes. c Hydraulic, air, and…
Datasets icon
Annotation icon
 

Brake Pads, Lining, Disc, and Drum Wear Measurements

Brake Dynamometer Standards Committee
  • Ground Vehicle Standard
  • J2986_201901
  • Current
Published 2019-01-07 by SAE International in United States
This Recommended Practice provides a common method to measure wear of friction materials (brake pad assemblies and brake shoes) and their mating parts (brake disc or brake drum). These wear measurements apply to brakes fitted on passenger cars and light trucks up to 4536 kg of Gross Vehicle Weight Rating under the Federal Motor Vehicle Safety Standard (FMVSS), or vehicles category M1 (passenger cars up to nine occupants, including the driver) under the European Community’s ECE Regulations.
Datasets icon
Annotation icon
 

FMVSS 105 Inertia Brake Dynamometer Test Procedure for Vehicles Above 4540 kg GVWR

Truck and Bus Hydraulic Brake Committee
  • Ground Vehicle Standard
  • J2684_201812
  • Current
Published 2018-12-05 by SAE International in United States
This Recommended Practice is derived from the FMVSS 105 vehicle test and applies to two-axle multipurpose passenger vehicles, trucks, and buses with a GVWR above 4540 kg (10000 pounds) equipped with hydraulic service brakes. There are two main test sequences: Development Test Sequence for generic test conditions when not all information is available or when an assessment of brake output at different inputs are required, and FMVSS Test Sequence when vehicle parameters for brake pressure as a function of brake pedal input force and vehicle-specific loading and brake distribution are available. The test sequences are derived from the Federal Motor Vehicle Safety Standard 105 (and 121 for optional sections) as single-ended inertia-dynamometer test procedures when using the appropriate brake hardware and test parameters. This recommended practice provides Original Equipment Manufacturers (OEMs), brake and component manufacturers, as well as aftermarket suppliers, results related to brake output, friction material effectiveness, and corner performance in a laboratory-controlled test environment. The test sequences include different dynamic conditions (braking speeds, temperature, and braking history as outlined in the FMVSS 105);…
Datasets icon
Annotation icon
 

Liquid Runway Deicing/Anti-Icing Product

G-12 Runway Deicing Product Committee
  • Aerospace Material Specification
  • AMS1435D
  • Current
Published 2018-11-02 by SAE International in United States
This specification covers runway deicing and anti-icing products in the form of a liquid. Unless otherwise stated, all specifications referenced herein are latest (current) revision.
Datasets icon
Annotation icon
 

Solid Runway Deicing/Anti-Icing Product

G-12 Runway Deicing Product Committee
  • Aerospace Material Specification
  • AMS1431E
  • Current
Published 2018-10-24 by SAE International in United States
This specification covers a runway deicing and anti-icing product in the form of a solid. Unless otherwise stated, all specifications referenced herein are latest (current) revision.
Datasets icon
Annotation icon
 

Study on Brake Disc Dynamics under Asymmetric Thermal Loads

Tongji Univ.-Dejian Meng, Jialin Liu, Jingyi Zhang, Lijun Zhang
Published 2018-10-05 by SAE International in United States
In order to explore the generation mechanism of hot-spots on the automotive brake disc, disc tests under non-frictional thermal loads are carried out on the brake dynamometer test bench. In the tests, the oxy-acetylene flame is used as the heat source, and the distribution characteristics of the disc temperature and displacement are measured and analyzed. To confirm the mechanism of the disc deformation, a disc thermal buckling model using finite element method is established, and the key factors for the disc thermal buckling under thermal loads are further analyzed. It is found that the temperature circumferential gradient is small but the temperature radial gradient is large. The disc presents waviness deformation mode with 5th order in circumferential direction, which is the first thermal buckling mode of the disc. A method using spatial frequency spectrum has been proposed to find the critical time and load of thermal buckling. The heat source power and the rotational speed have no significant influence on the temperature and displacement circumferential and radial distribution of the disc. The temperature radial gradient…
Datasets icon
Annotation icon
 

The Factors Governing Corrosion Stiction of Brake Friction Materials to a Gray Cast Iron Disc

Hyundai Mobis-Wangyu Lee, Dooyeon Kim, Keeyang Lee
Korea Univ.-Jaehyun Gweon, Sanghee Shin, Ho Jang
Published 2018-10-05 by SAE International in United States
Corrosion stiction at the contact interface between a brake friction material and a gray iron disc under the parking brake condition was investigated by evaluating the possible parameters that affect the shear force to detach the corroded interface. Using production brake friction materials, comprising non-steel and low-steel types, corrosion tests were carried out by pressing the brake pad onto the gray iron disc using a clamp at various conditions. Results showed that the shear force to detach the corroded interface tended to increase with applied pressure and corrosion time. On the other hand, porosity, acidity, and hydrophobicity of the friction material did not show a reliable correlation to the stiction force. The poor correlation of the stiction force with the friction material properties indicated that the stiction force was not determined by a single factor but governed by multiple parameters including surface contact areas and inhomogeneity of the ingredients. Microscopic observation of the detached disc surface showed adhered fragments that were removed from the friction material surface, thus shedding light on the possible estimation of…
Datasets icon
Annotation icon
 

Non-Asbestos Organic (NAO) Disc Pad Wear Behavior: Divergence of Thickness Loss and Weight Loss

Compact International (1994) Co. Ltd.-Meechai Sriwiboon, Nipon Tiempan, Kritsana Kaewlob
SKR Consulting LLC-Seong Rhee
Published 2018-10-05 by SAE International in United States
There is anecdotal evidence that disc pad wear numbers measured in thickness loss and disc pad wear numbers measured in weight loss do not show the same wear trends after wear or performance testing. However, research papers on this topic are difficult to find. Therefore, this investigation was undertaken to study and document this behavior in detail on high-copper, low-copper and no-copper (or copper-free) NAO pads. In all cases, thickness loss measurements are found to be substantially lower than expected from the weight loss data according to the SAE J2522 test schedule. This divergence is caused by pad swelling in the pad layer adjacent to the friction contact surface during brake testing at high temperatures. In addition to formulation changes, disc pad processing conditions such as mixing time and hot molding pressure are found to affect pad swelling. As pad physical properties, especially in the layer adjacent to the friction contact surface, are expected to dynamically change during braking due to the pad swelling, one has to seriously question any attempt to correlate physical properties…
Datasets icon
Annotation icon