Your Selections

Battery Packs
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Performance of Switched Reluctance Motor for Small Electric Vehicle in Urban Mobility

ARAI Academy-Vignesh S, Yogesh Krishan Bhateshavar, Mohammad Rafiq Agrewale, Kamalkishore Vora
  • Technical Paper
  • 2019-28-2501
To be published on 2019-11-21 by SAE International in United States
Small electric vehicles are challenging in nature while designing the power train and especially the mounting of batteries within the volume available. In this research, power train of small electric vehicle is designed and it is compared with the electric vehicles. The designed vehicle should meet the requirements of urban car so that it can be preferred in urban mobility. Emphasis is given on studying performance parameters such as motor speed, torque for different urban driving cycles by altering the motor and its no. of poles. Battery pack is designed to fit under the front hood of the vehicle whereas motor is fitted at the rear. Range is estimated using Simulink and it is validated with mathematical calculation using Peukert method performed in MATLAB. It is concluded that the designed vehicle with Switched Reluctance Motor 6/4 configuration of 15 kW, 110 Nm is sufficient to meet the urban car in 2020 targets. NCA battery is preferred for range improvement. Retro fitment is given higher priority while designing battery pack.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Low Voltage Powertrain in Light Electric Vehicles

Deki Electronics-Shubham Rai
  • Technical Paper
  • 2019-28-2467
To be published on 2019-11-21 by SAE International in United States
Engineering objective Light Electric Vehicles (LEV) with Li-ion batteries suffer from short battery life and poor efficiency, due to low grade electronics. Battery management systems (BMS) cannot always keep the pack in balance, and after cell voltages drift, capacity of the pack diminishes and some cells may destruct, causing a fire. The paper describes a novel approach to LEV powertrains using parallel connected battery cells & control methodology that keep cells in balance naturally, thereby eliminating BMS and hence safer to use. Li-Ion cells with different chemistries can be used and superior thermal management reduces temperature rise, resulting in longer battery life. Methodology Based on the original invention by the author, the system circuit schematics was designed and simulated using OrCAD PSpice. After obtaining results from the simulation, the first prototype device was constructed and tested in laboratory. Heat mapping and thermo couples were used to find hot spots and improve the efficiency, at the same time creating a thermal pattern that was easy to cool. Different components were tested to find the most efficient…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

EV Cell Chemistry for the Indian Market

Robert Bosch Engineering & Business Solutions, Ltd.-Prabhakar G, Tarang Garg
  • Technical Paper
  • 2019-28-2479
To be published on 2019-11-21 by SAE International in United States
Chemical reaction inside a cell, converts chemical energy into electrical energy and causes electric current to flow. If electric current passes backwards in a cell, it charges the cell. In a Li-Ion battery Lithium ions move from negative electrode to positive electrode during discharge and backwards when charging. The characteristics of a good Li-Ion Battery are: - High no of Cycle Times (Recharge) - High C Rating (Charging & Discharging), causing no degradation to performance - High Energy Density - Low Heat dissipation - Safe during operation against hazards - No impact of Overcharging or Undercharging - Reasonable cost For the EV Space in Indian region, top 3 most important requirements are as follows: - much higher cycle times than available in the most popular NMC cell chemistry - battery performance not impacted by charging or discharging at higher temperatures - Lowest cost that can drive the market adoption In this paper we will detail our the proposed solution for the Cell Chemistry which is suitable for Indian Market and also can be adopted by…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Performance & efficiency Improvement of Electric Vehicle Power train

International Centre for Automotive Technology-Devesh Pareek
  • Technical Paper
  • 2019-28-2483
To be published on 2019-11-21 by SAE International in United States
Introduction: The advent of electric mobility is changing the conventional mobility techniques and their application in automobiles across all segments. This development comes with challenges ranging across varied sub -systems in a vehicle including Power Train, HVAC, Accessories, etc. Objective: This paper would concentrate on the Power train related sub systems & improvement of the same both in terms of Efficiency & Performance. Methodology: The electric power train consists of three major sub parts: 1. Motor Unit 2. Controller with Power electronics 3. Battery Pack with BMS We would concentrate on improving the overall efficiency and performance of all these subsystems while they perform in vehicle environment and work in tandem by deploying following techniques: a. Improved Regenerative Braking for converting vehicles Kinetic energy into electrical energy using specific algorithms and control techniques b. Optimization of Design Specs and duty cycle based on real world driving cycles. c. Innovative Heat dissipation techniques to minimize energy loss to heat. d. Efficient Electrical to Chemical Energy conversion and vice versa through use of optimization techniques based on…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Thermal Management of Li-Ion Battery Pack using GT-SUITE

Indian Institute of Technology Madras-Sushant Mutagekar
NoonRay Energy Pvt Ltd.-Kaushal Kumar Jha
  • Technical Paper
  • 2019-28-2500
To be published on 2019-11-21 by SAE International in United States
Objective It is very important to simulate the battery pack being built to understand its behavior when used in applications especially Electric vehicles (EV). All Li-Ion cells are not the same. They need to be characterized before building any battery pack. Hence modeling the battery pack to simulated its performance in the actual conditions becomes important. Methodology To understand the behavior of cells in the on-field environment, they are tested at various conditions like different rates of charging/discharging, various depth of discharge (DOD), ambient temperature, etc. HPPC test is also performed on cells to derive its RC model equivalent model. GT Suite simulation software is used to model the Li-Ion cell using the testing data. Depending on the pack configuration, the modeled cell is connected in the required series and parallel configuration, to study the battery pack with respect to aging, performance and cooling requirements. Results The performance and aging of the battery pack are studied using the cell model. Cooling is designed in such a way that there are no hotspots in the battery…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development of PCX Electric

Honda Motor Co., Ltd.-Atsuo Ota
  • Technical Paper
  • 2019-28-2470
To be published on 2019-11-21 by SAE International in United States
We developed the electric motorcycle model “PCX ELECTRIC” that satisfies usability under the traffic environment in apan and ASEAN’s motorcycle sales major countries. The PCX ELECTRIC features easily removable battery packs, which practically helps eliminate the waiting time associated with charging the battery. The compactly designed EV system, which is efficiently packaged in the vehicle, uses two removable 48 V battery packs connected in series to realize a 96 V system suitable for driving the electric motorcycle. The EV system mounted on the body of the 2018 PCX achieves a motor power of 4.2 kW, top speed of 60 km/h, and cruising range of 41 km (at a steady 60 km/h). In addition, we developed a highly-convenient battery attaching system that enables fixing of the battery to the vehicle body and engaging of the connectors with a single action operation.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Thermal Behavior Analysis of Lithium Ion Cells used in EVs and HEVs

A R A I-Aatmesh Jain
College of Engineering-Shubham Gaurishankar Lonkar
Published 2019-10-11 by SAE International in United States
The batteries for electric vehicles (EV) generate heat during discharging cycles. During these rapid discharge cycles the temperature of cell may increase above allowable limits. The high temperature of lithium ion cell is the primary factor affecting the cell performance and life. To develop efficient cooling mechanism for batteries, thermal behavior of secondary cell is must know. In this research, experimentally the thermal behavior analysis of cylindrical lithium ion cells at constant current discharge cycles with different current rates for each cycle is evaluated. The experiments were carried out at three discharge cycles of 1C, 2C and 3C rates and two battery chemistries namely NiMnCo and NiCoAlare considered for analysis. The instantaneous temperature of cell was measured using thermal imager and increase in overall cell surface temperature at different discharge rates, for entire discharging interval has been studied. An empirical relation for average surface temperature of cell at different current rates and depth of discharge has been obtained which may find application in defining the discharge algorithms. The rates of internal heat generation in both…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Environmental Analysis Based on Life Cycle Assessment: An Empirical Investigation on the Conventional and Hybrid Powertrain

University of Naples, Parthenope-Antonio Forcina
University of Rome, Niccolò Cusano-Luca Silvestri, Gabriella Arcese
Published 2019-10-07 by SAE International in United States
The Life Cycle Sustainability Assessment (LCA) methodology is today considered as a crucial paradigm with multiple levels of analysis, including the economic, social and environmental aspects. In this scenario, the purpose of the present research is to carry out an accurate and extensive LCA based analysis to compare the environmental impact, between conventional gasoline and hybrid vehicle powertrains. Two different powertrain scenarios were considered maintaining the same vehicle chassis. The performed analysis concerned resources and energy consumption as well as pollutant emission of each process, evaluating the impact of powertrain production, the vehicle use phase, and powertrain end of life scenarios. A large set of indicators - including human toxicity, eutrophication, and acidification - was considered. The study indicates that the potential of electrified vehicles basically depends on efficient production and recycling of the battery. We found that the conventional powertrain determines a higher Global Warming Potential (GWP) than hybrid powertrain (by almost 30%). Conversely, the water-related impact is higher in hybrid powertrain, and this is associated to the extraction and processing of the metal…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

The new gas tank: Constellium readies its first OEM EV battery tray

Automotive Engineering: October 2019

Paul Seredynski
  • Magazine Article
  • 19AUTP10_04
Published 2019-10-01 by SAE International in United States

Global Tier-1 aluminum specialist Constellium's first OEM EV battery enclosure is a far cry, engineering-wise, from the century-old fuel tank.

The “gas tank” is about to get a lot more sophisticated. Electric vehicle (EV) battery trays are highly-engineered components that barely existed a few years ago but play a wide role in an EV's safety, rigidity and weight - and therefore efficiency. They also need to be watertight. The enclosures typically reside within an EV's wheelbase and often serve double duty as the vehicle's underbelly, housing the complement of batteries, control and monitoring electronics along with cooling and high-voltage circuits.

Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Simultaneous Optimization of Real-Time Control Strategies and Powertrain Design for Fuel Cell Hybrid Vehicles

University of Salerno, Italy-Marco Sorrentino, Dario Capaldo
Published 2019-09-09 by SAE International in United States
The successful introduction of low-carbon footprint and highly efficient fuel cell vehicles represents nowadays a key action to achieve sustainable mobility worldwide. The main technological barriers (i.e., market price, lifetime and performance) to be overcome justifies an increasing attention towards the development of mathematical tools featuring co-optimization capabilities, so as to adequately account for the strong interactions and mutual influence between design criteria and selected control strategies. This paper thus presents and discusses the integration of a comprehensive model of a generic FCHV architecture with a specifications independent control strategy within a modular constrained optimization algorithm, the latter conceived in such a way to simultaneously find the optimal FCHV powertrain design and real-time applicable control strategies. Suitable design and energy management criteria, accounting for also the impact of driving mission on proper management of available power sources, were selected. The proposed co-optimization procedure aims at determining the main powertrain design parameters (i.e., nominal fuel cell system power and battery pack energy density), as well as some key driving cycle-related information (i.e., power prediction time horizon),…
This content contains downloadable datasets
Annotation ability available