Your Selections

Assembling
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Load Distribution Optimization of seatbelts using validated finite element approach.

Anshul Satija-Anshul Satija
Joyson Safety Systems-Priyanshu Mishra, Ravi Gaurav, Virender Singh
  • Technical Paper
  • 2019-28-2575
To be published on 2019-11-21 by SAE International in United States
The seat belt system is one of most imperative component of the safety instrument family in a vehicle. The main purpose of seat belt is to minimize the injuries by preventing the occupant from impacting hard interior parts of the vehicle and also the passenger from being thrown-out from the vehicle in case of rollover accidents. The standard three-point belts, mounted to the vehicle in three places, namely anchor, D ring and buckle. The position of D ring is very important to distribute the impact load evenly to the occupants. Very high load in any of these locations could cause breakage of the mountings and also concentrated loading on the occupant chest of pelvis. This study mainly focuses on the seatbelt assembly performance improvement against ECE-R16 sled test. The sled test was carried out first using 28g peak acceleration pulse and measurement of forces at shoulder and anchor position was measured using the load cell. FE (Finite Element) model of the complete seatbelt assemble was developed including buckle, retractor and anchor plate. The simulation was…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

ENHANCE STRENGTH, ACCURACY AND PRECISION OF THE 3D PRINTED ASSEMBLY AID GAUGES

General Motors Technical Center India-Ramesh Kavalur, Raghavendra Rao
  • Technical Paper
  • 2019-28-2568
To be published on 2019-11-21 by SAE International in United States
ENHANCE STRENGTH, ACCURACY AND PRECISION OF THE 3D PRINTED ASSEMBLY AID GAUGES Ramesh Kavalur1, Raghavendra Rao 1 1 Body in White, Manufacturing Engineering, General Motors Technical Centre India Pvt. Ltd, India, Keywords - Additive manufacturing, assembly aid gauges, 3D printer. Research Objective - Automotive manufacturing impressively implementing 3D printed jigs and fixtures. Traditional manufacturing of metal assembly aid gauges have limitations such as lead time and causes dent and rough marks on the outer panel of the body. On the other hand, 3D printed jigs and fixtures, demands more time (depends on complexity), have low level of precision and they offer lower strength. It is observed that this occurs because of the inefficient design and manufacturing without understanding the functionality and capability of the 3D printer. The primary objective of this study is to examine, design & develop 3D printed jigs and fixture to optimize the product, achieve required precision and functionality with improvement in the strength of the product. Methodology - In order to examine, detail examination of existing 3D printed part were studied.…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Experimental Study on Verification of Alloy ASTM A510 High-Speed Micro Turning by Parameters Validation through Ranking Algorithm

SRM Institute Of Science And Technology-Sundar Singh Sivam Sundarlingam Paramasivam, Durai Kumaran, Krishnaswamy Saravanan, Raj Rajendran
Tishk International University-Ganesh Babu Loganathan
Published 2019-10-11 by SAE International in United States
In the details and assembly, in the range of less than 1 mm, the number of functions increases, and the demand for industrial products in which the size and characteristics of components are decreasing is increasing. Micromachining is the most basic technology for producing these small parts and components. In this study, a series of turning operations, micromachining parameters, were performed under microscopic conditions to obtain the best response for the benefit of the industry. The needle is very high. Speed (3000, 3500, 4000 rpm), pre- (20, 40, 80 μm / sec), depth of cut (0.2.0.4.0.8 μm), tool radius (0.4.08, 1, 2 mm). Surface quality, material removal rates, energy consumption, and tool wear differences for various input process variables were investigated. Once the experiment is complete, we will develop an optimization strategy for this set of input parameters to improve responsiveness using the Grey Relational Analysis (GRA) and ANOVA. Therefore, the model can create micro-process parameters to achieve the highest product accuracy and improved performance.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Design of Energy Absorbing Plastic Brackets to Meet Rear Crash Regulation ECE R42

Automotive & Industrial Sales-Pushparaj Arumugam
Automotive CAE-Devendra Sankla
Published 2019-10-11 by SAE International in United States
Vehicle safety and adherence to rules and regulation is of utmost requirement for any OEM. ECE R42 is one of the most important test criteria for a vehicle to get launched. To prove this, we shall discuss the case of Low speed impact structure construction. In this paper, we are going to demonstrate the novel design of Polymer energy absorption structure to meet the rear bumper low speed impact test and ensure proper absorption of impact energy and avoid any damage to rear lamp of the vehicle. This paper shows a perfect example of sustainability with the help of complete modular construction of the frame structure. The proposed design uses a cost-effective way of assembling the physical part by comparing with benchmarking and within the Mahindra part library. The low speed impact structure is mounted directly to BIW panels without any extra foams. These frame structure are simple in design and rigid in construction by comparing with other OEM products and within all Mahindra vehicles.The low speed impact structural member is integrated but modular at…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

A Framework for Effective Implementation of Process Failure Modes and Effects Analysis with Control Plans to Mitigate Process, Discrete Manufacturing and Service Industries, Using Aerospace Standard Best Practices

GITAM School of Technology-Mani Rathinam Rajamani, Eshwaraiah Punna
Published 2019-10-11 by SAE International in United States
In Today’s World, Every Manufacturing and Service Industry aims in providing the Highest Quality of Products and Service at the lowest Competitive Cost and timely delivery to its Customers. The Discrete Aerospace Manufacturing and Assembly industry is taking initiatives to implement the Process Failure Modes and Effects Analysis (PFMEA) tool for its critical Aerospace Manufacturing and Assembly suppliers, by implementing Aerospace Standards, in an effort to create a synergy between the End user customers, Original Equipment manufacturers and the suppliers, for ensuring increased safety, quality, reliability for the Aircraft parts and components produced by them. The main aim is to use this concept as a Process Risk Management tool for Identification, Assessment, Mitigation, Control and Prevention of risks associated with Designs and Manufacturing. This method is quite different from conventional FMEA methodology as it focuses on an integrated approach of linking the process flow diagram, followed by a PFMEA again linked with a Control plan to identify and implement controls for measuring and monitoring the process risks. This can identify the manufacturing system’s area of…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Optimization of IP Duct Vane Articulation for Improved Cabin Airflow Directivity

Mahindra & Mahindra, Ltd.-Kumar Raju
Mahindra Research Valley-Subramaniyan Baskar, Nagarajan Gopinathan, Paradarami Udaya Kumar
Published 2019-10-11 by SAE International in United States
The air velocity achieved at driver and passenger aim point is one of the key parameters to evaluate the automotive air-conditioning system performance. The design of duct, vent and vanes has a major contribution in the cabin air flow directivity. However, visual appearance of vent and vane receives higher priority in design because of market demand than their performance. More iterations are carried out to finalize the HVAC duct assembly until the target velocity is achieved. The objective of this study is to develop an automated process for vane articulation study along with predicting the optimized velocity at driver and passengers. The automated simulation of vane articulation study is carried out using STAR-CCM+ and SHERPA optimization algorithm which is available in HEEDS tool. The minimum and maximum vane angle are defined as parameters and face level velocity is defined as response. Depending on the optimization technique and number of iterations defined in HEEDS, the vane angle will get updated and the design iterations proceeds automatically till the number of iterations are met. The obtained results…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Low Cost Reconfigurable Jig Tooling and In-Process Metrology for High Accuracy Prototype Rotorcraft Wing Assembly

University of Nottingham-Richard J. Crossley, Svetan Ratchev
Published 2019-09-16 by SAE International in United States
Reconfigurable tooling frames consisting of steel box sections and bolted friction clamps offer an opportunity to replace traditional expensive welded steel tooling. This well publicized reconfigurable reusable jig tooling has been investigated for use in the assembly of a prototype compound helicopter wing.Due to the aircraft configuration, the wing design is pinned at both ends and therefore requires a higher degree of end to end accuracy, over the 4m length, than conventional wings. During the investigation some fundamental issues are approached, including:Potential cost savings and variables which effect the business case.Achievable Jig accuracy.Potential sources of instability that may affect accuracy over time.Repeatability of measurements with various features and methods.Typical jig stability over 24hrs including effects of small temperature fluctuations.Deflections that occur due to loading.The cost benefit of reusable tooling in a low volume prototype scenario is examined followed by the design of the jig and location features to enable the accurate build and certification documentation to be completed. A prototype 4m test jig comprising of commercially available components and bespoke machined ‘pick-ups’ is presented.Hardware and…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Optimization of Automated Airframe Assembly Process on Example of A350 S19 Splice Joint

Airbus-Elodie Bonhomme, Pedro Montero-Sanjuan
Peter the Great St. Petersburg Polytechnic University-Sergey Lupuleac, Julia Shinder, Maria Churilova, Nadezhda Zaitseva, Valeriia Khashba
Published 2019-09-16 by SAE International in United States
The paper presents the numerical approach to simulation and optimization of A350 S19 splice assembly process. The main goal is to reduce the number of installed temporary fasteners while preventing the gap between parts from opening during drilling stage. The numerical approach includes computation of residual gaps between parts, optimization of fastener pattern and validation of obtained solution on input data generated on the base of available measurements. The problem is solved with ASRP (Assembly Simulation of Riveting Process) software. The described methodology is applied to the optimization of the robotized assembly process for A350 S19 section.
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

New Technologies for Airframe Structural Assemblies

LISI Aerospace-Mehdi Dahane
Published 2019-09-16 by SAE International in United States
With air traffic demand constantly increasing and several years of aircraft production in their backlog, major aircraft manufacturers are now shifting their focus toward improving assembly process efficiency. One of the most promising solutions, known as “One Side Assembly”, aims to perform the whole assembly sequence from one side of the structure (drilling, temporary fastener installation and removal, blind fastener installation, assembly control) and with a high level of integrated automation. Investments in robotic equipment, automation engineering and innovation are very active and automation capabilities have already increased a lot in the aerospace industry. As an example, drilling operations for large dimensions airframe are clearly moving from manual to automated. However, despite more and more clever and sophisticated robotics, the use of historical fasteners with two side installation method remains a strong limitation to innovative automated assembly sequences. A blind fastener which can provide the same mechanical characteristics than current structural fasteners, while providing automation friendly features and meeting cost objectives is a real “must have” for assembly process efficiency improvements. It is also full…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Advanced Assembly Solutions for the Airbus RACER Joined-Wing Configuration

University of Nottingham-David Bainbridge, Konstantinos Bacharoudis, Andrea Cini, Alison Turner, Atanas Popov, Svetan Ratchev
Published 2019-09-16 by SAE International in United States
The Rapid And Cost Effective Rotorcraft (RACER) is being developed by Airbus Helicopters (AH) to demonstrate a new Vertical Take-Off and Landing configuration to fill the mobility gap between conventional helicopters and aeroplanes. RACER is a compound rotorcraft featuring wings and multiple rotors. The wing arrangement suggested by AH is defined as a staggered bi-plane joined configuration with an upper and a lower straight wing, either side of the fuselage, connected at their outboard extent to form a triangular structure. The ASTRAL consortium, consisting of the University of Nottingham and GE Aviation Systems, are responsible for the design, manufacture, assembly and testing of the wings. Producing an optimised strategy to assemble a joined-wing configuration for a passenger carrying rotorcraft is challenging and novel. The objective of this work concerns all aspects of assembling the joined-wing structure.The joined-wing and fuselage structures will be produced independently and mated together during the final RACER assembly. A multi-stage process will deliver the joined-wing assembly and ensure it will fit to the fuselage. Producing the individual wing structures requires a…
Annotation ability available