Your Selections

Anthropometric test devices
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Load Distribution Optimization of seatbelts using validated finite element approach.

anshul satija-Anshul Satija
  • Technical Paper
  • 2019-28-2575
To be published on 2019-11-21 by SAE International in United States
The seat belt system is one of most imperative component of the safety instrument family in a vehicle. The main purpose of seat belt is to minimize the injuries by preventing the occupant from impacting hard interior parts of the vehicle and also the passenger from being thrown-out from the vehicle in case of rollover accidents. The standard three-point belts, mounted to the vehicle in three places, namely anchor, D ring and buckle. The position of D ring is very important to distribute the impact load evenly to the occupants. Very high load in any of these locations could cause breakage of the mountings and also concentrated loading on the occupant chest of pelvis. This study mainly focuses on the seatbelt assembly performance improvement against ECE-R16 sled test. The sled test was carried out first using 28g peak acceleration pulse and measurement of forces at shoulder and anchor position was measured using the load cell. FE (Finite Element) model of the complete seatbelt assemble was developed including buckle, retractor and anchor plate. The simulation was…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design of Additive Manufactured Thermoplastic Component as FMVSS 201U Countermeasure

General Motors Technical Center India-Swaroop Kavi
  • Technical Paper
  • 2019-28-2547
To be published on 2019-11-21 by SAE International in United States
Research and/or Engineering Questing/Objectives: Safety of the occupant in passenger cars is one of the regulatory requirements in many developed countries. This includes upper interior head impact load case of the unbelted occupant during crash (FMVSS 201U) as one of them. During a crash event the occupant head can collide with the interior parts of the vehicle, such as a headliner, pillar trim and other subsequent components in the loading direction. Injury on the head is quantified in terms of the Head Injury Criterion of a crash test dummy (HIC(d)) value which should be less than 1000 per standard. Several ways can be adopted to reduce the HIC(d) value. These include a change in the design of ribs in the safety plastic components, headliner profile change, use of countermeasure foam between headliner and the exterior sheet metal parts, or a combination of any of these to absorb the energy of impact. Recent developments in the field of manufacturing, such as the Additive Manufacturing (AM) method, have provided an opportunity to design and manufacture components with…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Comparison Study of Malaysian Driver Seating Position in SAEJ1517 Accommodation Model

SAE International Journal of Passenger Cars - Mechanical Systems

PROTON Shah Alam, Malaysia-Zuli’zam Rashid
Universiti Teknologi Malaysia, Malaysia-Nooh Abu Bakar
  • Journal Article
  • 06-12-02-0006
Published 2019-04-08 by SAE International in United States
A key element in an ergonomically designed driver’s seat in a car is the correct identification of driver seating position and posture accommodation. Current practice by the automotive Original Equipment Manufacturer (OEM) is to utilize the Society of Automotive Engineering (SAE) J1517 standard practice as a reference. However, it was found that utilizing such guidelines, which were developed based on the American population, did not fit well with the anthropometry and stature of the Malaysian population. This research seeks to address this issue by comparing the SAE J1517 Model against Malaysian preferred driving position. A total of 62 respondents were involved for the driver seating position and accommodation study in the vehicle driver’s seat buck mockup survey and measurements. The results have shown that the Malaysian drivers prefer to sit forward as compared to the SAE J1517 Model and have shorter posture joint angle. This could significantly affect the design of the driver seat positions and layout of other driving elements, suggesting a need to reconsider its application, in particular for the Malaysian population.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Risk of Concussion in Low- to Moderate-Speed Frontal and Rear-End Motor Vehicle Collisions Evaluated Using Head Acceleration-Based Metrics

Exponent, Inc.-Stephanie A. Pasquesi, Alexander Bruno, Amy Courtney, Stacy M. Imler, Janine Smedley, Michael T. Prange
Published 2019-04-02 by SAE International in United States
Over the past decade, there has been an increase in awareness and concern about the occurrence and long-term effects of concussions. Traumatic brain injury (TBI)-related emergency department (ED) visits associated with motor vehicle collisions, including patients with a diagnosis of concussion or mild TBI (mTBI), have increased while deaths and hospital admissions related to TBI have decreased. The diagnostic criteria for concussion have evolved and broadened, and based on current assessments and diagnostic imaging techniques, there are often no objective findings, yet a diagnosis of concussion may still be rendered. Clinical assessment of concussion may be based only on patient-reported symptoms and history, making it difficult to objectively relate the reported increase in TBI-related ED visits due to motor vehicle collisions to specific collision parameters. This study aims to perform a scientific evaluation of concussion risk during motor vehicle collisions, strengthened by objective, quantitative data, specifically focusing on head acceleration-based metrics. Data from full-scale passenger vehicle crash tests are reported for frontal and rear-end collisions with delta-Vs ranging from 6.0 to 19.0 kph (3.7 to…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Evaluation of Occupant Kinematics in Low- to Moderate-Speed Frontal and Rear-End Motor Vehicle Collisions

Exponent Inc.-Alexander Bruno, Megan Toney-Bolger, Juff George, Jeffrey Koller, Anton Filatov, Joseph Olberding
Published 2019-04-02 by SAE International in United States
Low- to moderate-speed motor vehicle collisions are a common crash type and are sometimes associated with injury complaints. Understanding occupant motion (kinematics) in response to low- and moderate-speed motor vehicle collisions is important for evaluating occupant interactions with interior vehicle structures, including the restraint systems, with the ultimate goal of assessing injury potential. Furthermore, quantitative occupant kinematic data from full-scale crash testing of late-model passenger vehicles is limited for collisions at low- to moderate-speeds. The current study reports kinematic data from full-scale frontal and rear-end crash tests of late-model, mid-size sedans with delta-Vs ranging from 6.0 to 19.0 kph (3.7 to 11.8 mph) and 5.6 to 19.5 kph (3.5 to 12.1 mph), respectively. For each test vehicle, the motion of a Hybrid III 50th-percentile male anthropomorphic test device (ATD) restrained in the driver seat was recorded using high-speed onboard video. Motion tracking of the video was used to evaluate the excursion and velocity of each ATD’s head, shoulder, elbow, and knee with respect to the vehicle interior. Restraint loads were recorded via load cells placed…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Evaluating a Heavy-Duty Truck Climate Control System Using Thermal Comfort-Focused Testing and Simulation Techniques

ThermoAnalytics Inc.-Mark Hepokoski, Steven Patterson, Allen Curran
Volvo Trucks North America-Steven Adelman, Miguel Javier
Published 2019-04-02 by SAE International in United States
A test protocol previously developed for automotive applications was adapted to evaluate the performance of a climate control system for a heavy-duty truck. Human subjects, as well as a test system composed of a high-resolution passive sensor manikin and a human thermal model, were employed to evaluate thermal comfort perception. Testing was performed in a climate-controlled wind tunnel equipped with a dynamometer. The truck’s HVAC system performance was evaluated in a −10 °C environment. Additionally, the test protocol was designed to explore a large range of thermal sensation and comfort states. Subjective responses, including thermal sensation and comfort, as well as thermo-physiological state information, quantified by skin temperatures measured across the body, were obtained from the human test participants and compared to that which was indicated by the test system.
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Evaluation of Equivalent Temperature in a Vehicle Cabin with a Numerical Thermal Manikin (Part 2): Evaluation of Thermal Environment and Equivalent Temperature in a Vehicle Cabin

AGC Inc.-Yoshiichi Ozeki, Seiko Suzuki
Nissan Motor Co., Ltd.-Hajime Oi, Yasushi Ichikawa, Akira Matsumoto
Published 2019-04-02 by SAE International in United States
In the previous paper (Part 1), measurements of equivalent temperature (teq) using a clothed thermal manikin and modeling of the clothed thermal manikin for teq simulation were discussed. In this paper (Part 2), the outline of the proposed mesh-free simulation method is described and comparisons between teq in the calculations and measurements under summer cooling with solar radiation and winter heating without solar radiation conditions in a vehicle cabin are discussed. The key factors for evaluating teq on each body segment of the clothed thermal manikin under cooling and heating conditions are also discussed. In the mesh-free simulation, even if there is a hole or an unnecessary shape on the CAD model, only a group of points whose density is controlled in the simulation area is generated without modifying the CAD model. Therefore, the fluid mesh required by conventional CFD code is not required, and the analysis load is significantly reduced. The most advantageous point is that this mesh-free simulation method satisfies the conservation laws of mass, momentum, and energy. The cabin thermal environment and…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

FRED II Quasistatic Seat Testing Rearward: An Improved Method Based on the SAE H-point Manikin

Collision Research & Analysis Inc.-Samuel White
Ford Motor Company-Roger Burnett
Published 2019-04-02 by SAE International in United States
Various methods have been used to load a seat in the rear direction, including FMVSS 207, assorted body blocks and QST (quasistatic seat test). However, each method lacks some critical aspect of occupant loading of the seat or is too complex for routine development work. A new method is presented to determine the strength and energy transfer of a seat to an occupant in rear impacts that reflects how an occupant interacts with the seat in a rear impact. A metal-cast H-point manikin, called FRED II, was modified to support a loading bar and was pulled rearward into the seatback by a hydraulic ram. The force and displacement of the loading and the inboard and outboard seatback angle were measured. The response of the seat was recorded by video. The moment about the recliner pivot at peak force was determined by aligning the center of the recliner in side views of the seat position initially and at peak load. The height of the cable above the center of the recliner was determined giving the moment…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Posterior Cruciate Ligament Response to Proximal Tibia Impact

Biomechanics Research Associates-Bruce Donnelly
NHTSA-Joe McFadden
Published 2019-04-02 by SAE International in United States
Posterior cruciate ligament (PCL) injuries, although rarely life threatening, affect the quality of life of the person who sustains the injury. The PCL is the primary restraint to posterior tibial translation and can be injured when the tibia moves posteriorly relative to the femur. This type of injury is common in frontal crashes where the tibia may impact the dashboard or steering column. To quantify what happens during dynamic loading of the tibial plateau, isolated cadaveric lower limbs (n = 14) were impacted at dynamic rates with a linear pneumatic ram. During the testing, a static load was applied to the quadriceps tendon to simulate active musculature. Forces as well as the stretch of the PCL were measured. The most common injuries were tibia fractures and PCL tears. The stiffness for the tests at impact velocities of 1.4 and 2.9 m/s were on average 120 N/mm and 141N/mm, respectively. A trend towards increasing femur force with increasing velocity was found. The study presents biofidelity targets for the response of the cadaveric limbs, which can be…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Passenger Vehicle Dynamic Response and Characterization of Side Structure during Low- to Moderate-Speed Side Impacts

Exponent Inc.-Jason Skiera, Charles Crosby, Cleve Bare, Marc Paradiso, Gregory Campbell
Published 2019-04-02 by SAE International in United States
A significant portion of real-world passenger vehicle side impacts occur at lower speeds than testing conducted by the National Highway Traffic Safety Administration (NHTSA) or the Insurance Institute for Highway Safety (IIHS). Test data from low- to moderate-speed side impacts involving late-model passenger vehicles is limited, making the evaluation of vehicle impact response, occupant loading, and injury potential challenging. This study provides the results of low- to moderate-speed impact testing involving a late-model mid-size sedan. Two full-scale Non-Deformable Moving Barrier (NDMB) side impact crash tests were conducted at speeds of 6.2 mph (10.0 kph) and 13.4 mph (21.6 kph). Instrumentation on the late-model sedan used for the test series included tri-axis accelerometers and seat belt load cells. In both tests, instrumented Hybrid III 50th percentile-male Anthropomorphic Test Devices (ATDs) were restrained in the driver and passenger seats using the standard three-point seat belts. Response data for the vehicle, barrier, and ATDs was recorded using onboard data acquisition, and on- and off-board real-time and high-speed video cameras. In addition, the deformation to the side of the…
This content contains downloadable datasets
Annotation ability available