Your Selections

Aluminum
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

 

Design & analysis of 2 point aluminum upper control arm in modular multi link rear suspension system

ZF India Pvt, Ltd.-MAYUR SHAMKANT KULKARNI
  • Technical Paper
  • 2019-28-2564
To be published on 2019-11-21 by SAE International in United States
In current automobile market, due to the need of meeting future CO2 limits and emission standards, demand for hybrid systems is on the rise. In general, the requirements of modern automobile architecture demands modular chassis structure to develop vehicle variants using minimum platforms. The multi-link modular suspension system provides ideal solution to achieve these targets. To match ideal stiffness characteristics of system with minimum weight, aluminum links are proving a good alternative to conventional steel forged or stamped linkages. Design of current 2-point link (Upper Control Arm) is based on elasto-kinematic model developed using standard load cases from multi body dynamics. CAD system used is CATIA V5 to design upper control arm for rear suspension. This arm connects steering knuckle & rear sub frame. For Finite Element Analysis we used Hyperworks CAE tool to analyze design under all load cased & further optimization is done to resolve highly stressed zones. An optimized solution presented with a balance of ideal stiffness & strength. A CAD model developed with aluminum forged alloy (6082 - T6) is compared…
 

High Durable PU Metallic Monocoat system for tractor sheet metal application.

Mahindra & Mahindra Kandivali-SUDHIR SAWANT
Mahindra & Mahindra Ltd-Yogesh keskar, Nitin pagar
  • Technical Paper
  • 2019-28-2541
To be published on 2019-11-21 by SAE International in United States
In sheet metal painting for various applications like Tractor, Automobile, most attractive coating is metallic paints and it is widely applied using 3 coats 2 bake or 3 coat 1 bake technology. Both options, results in high energy consumption, higher production throughput time & lower productivity in manufacturing process. During various brainstorming & sustainable initiatives, paint application process was identified for alternative thinking to reduce burden on environment & save energy. Various other industry benchmarking & field performance requirement studies helped us identify the critical to quality parameters. We worked jointly with supplier to develop mono-coat system without compromising the performance & aesthetical properties. This results in achieving better productivity, elimination of two paint layers, substantial reduction in volatile organic content, elimination of one baking cycle and energy saving. Metallic mono-coat formulated using strong polyurethane resins & latest technology pre-coated aluminum pigment for achieving metallic effect in finish. With new resin technology further, reduction of baking temperature is possible & reduce further energy consumption. The proposed technology is fully validated on component and ready. Proposed…
 

A Parametric Study on Electrothermally Actuated Novel Compliant Micro-gripper

NIT-Kishor Bharadwaj, Thillaigovindan Ramesh
VIT-Renold Elsen
  • Technical Paper
  • 2019-28-0032
To be published on 2019-10-11 by SAE International in United States
At Micron-levels, Thermal Actuation provides higher forces compared to the largely-used electrostatic mode of actuation. To achieve larger displacements at lesser voltages, the principle of Electro thermal actuation is used. It works on the principle of selective non-uniform Joule heating; which results in thermal expansion of the specimen due to constraints. The gripper proposed in this work is analyzed using FEA and is fabricated using Aluminum and stainless steel to achieve quicker response. The in-plane displacement, strain, stress, current density and temperature have been predicted for different magnitudes of current-voltage combination that the gripper sustains. It was found that, micro gripper performs well under 1v giving 60µm displacement. Parametric sweep was carried out using commercially available FEA software package; COMSOL Multiphysics, to study and analyse the effect of different parameters on the performance of the gripper. It has been observed that the displacement increases with the increase in applied voltage.
 

Experimental investigation on turning characteristics of TiC/MoS2 nanoparticles reinforced Al7075 using TiN coated cutting tool

Sri Sairam Engineering College-Vetri Velmurugan Kannan
Vellore Institute of Technology-Venkatesan Kannan, Devendiran Sundararajan, Budireddy Uday Kumar, Dhulipalla Anvesh, Varupula Akhil
  • Technical Paper
  • 2019-28-0165
To be published on 2019-10-11 by SAE International in United States
In recent years, aluminum metal matrix composites (Al-MMC) are found as a potential material for numerous applications owing to its good tribological and mechanical properties. In this work, the machining characteristics of aluminum alloy (Al7075) reinforced with TiC/MoS2 having nanoparticle. The samples of aluminum metal matrix composites by varying TiC in 0, 2 and 4 and MoS2 in 0 and 2 of the percentage weight of aluminum alloy (Composite 1(Al7075), Composite 2 (Al7075/2TiC/2MoS2) and composite 3 (Al7075/4TiC/2MoS2), respectively) are fabricated by the stir-casing method. The turning characteristics of the developed metal matrix composites are studied at various parameters such as cutting velocity (30 m/min, 60 m/min and 90 m/min), cutting depth (0.5 mm, 1.0 mm and 1.5 mm) and composites (1, 2 and 3) using TiN coated cutting tool by dry turning at 0.05 mm/rev feed rate. The turning characteristics of the prepared samples are compared each other under L20 orthogonal array on CNC turning machine. The significant findings in the present study are: hardness of base aluminum alloy is found to increase with the…
 

Lightweight Wheel Bearing with Dissimilar Materials for Vehicle

Hyundai Motor Group-Jaehee Lee
Iljin Global-Inha Lee, Seonho Lee, Heechan Shim, Jungyang Park
  • Technical Paper
  • 2019-01-2134
To be published on 2019-09-15 by SAE International in United States
Limited fossil fuel resources, air pollution, and global warming all drive strengthening of fuel economy and vehicle emission standards globally. Much R&D continues to be dedicated to improve fuel efficiency of automobiles and to reduce exhaust gasses. These include improvement of engine/driveline performance for higher efficiency, development of alternative energy, and minimization of air resistance through aerodynamic design optimization. OEM weight reduction-focused research has extended into chassis components (steering knuckle, brakes, control arms, etc.) in sequence from body-in-white(BIW). Wheel bearings, one of the core components of a driveline and part of a vehicle’s unsprung mass, are also being required to reduce weight. Conventionally, wheel bearings have achieved “lightweighting” primarily through design optimization methods. They have been highly optimized today using steel based materials. Opportunities for further mass optimization are increasingly limited and so the focus of this study is integration of lighter-materials into steel bearing components for weight savings. Both aluminum and CFRP were considered in the study for partial integration into the steel hub flange which interfaces directly with the wheel. The application of…
 

Study on Application Methods to Mitigate Galvanic Corrosion between Wheel Bearing and Aluminum Knuckle

Iljin Global-Sewoong Kim, Seonho Lee, Hyounsoo Park
  • Technical Paper
  • 2019-01-2136
To be published on 2019-09-15 by SAE International in United States
The substitution of aluminum for steel is an effective weight reduction solution where the application permits it; aluminum knuckles have been widely used for this reason. However, when an aluminum knuckle is assembled with the steel outer-ring of a wheel bearing without any means for galvanic corrosion prevention, the aluminum knuckle may severely corrode. Galvanic corrosion products can make it difficult to remove a wheel bearing from the aluminum knuckle during vehicle maintenance. Prevention of this problem is the focus of this paper. In this study, several concepts were examined to prevent or mitigate galvanic corrosion between a wheel bearing and its mating aluminum knuckle. One set of concepts involves using surface treated metal sleeves (using ferritic nitro-carburizing or a special coating). The sleeves were then inserted onto the outer-ring diameters of the wheel bearings prior to assembly into the steering knuckle. Another set of concepts that were investigated involves the application of thin coatings having high anti-corrosion properties. The coatings were applied directly to the bearing outer-ring knuckle piloting surfaces and bearing knuckle mounting…
 
new

Flux, Aluminum Welding

AMS B Finishes Processes and Fluids Committee
  • Aerospace Material Specification
  • AMS3414F
  • Current
Published 2019-08-20 by SAE International in United States

This specification covers an aluminum welding flux in the form of powder.

 
new

Boss - Plug/Pin, Expansion Type Hole Preparation

E-25 General Standards for Aerospace and Propulsion Systems
  • Aerospace Standard
  • AIR3276
  • Current
Published 2019-08-15 by SAE International in United States
No Abstract Available.
Annotation icon
 

Aluminum Alloy, Extruded Profiles (2043-T85) 2.8Cu - 1.65Li - 0.35Mg - 0.1Zr Solution Heat Treated, Stress Relieved by Stretching, and Aged

AMS D Nonferrous Alloys Committee
  • Aerospace Material Specification
  • AMS4450
  • Current
Published 2019-07-03 by SAE International in United States
This specification covers an aluminum alloy in the form of extruded rods, bars, and profiles (shapes) produced with thickness between 0.040 and 2.500 inches (1.02 to 38.10 mm) in thickness, and having a maximum cross sectional area of 23 in2 (15000 mm2) and a maximum circumscribing circle diameter (circle size) of 16 inches (406 mm) (see 8.4.1).
Datasets icon
Annotation icon
 

MOUNTING HARDWARE, CUSHION CLAMP, METAL FOR CABLE HARNESS TYING AND SUPPORT, TYPE V, CLASS 1

AE-8C2 Terminating Devices and Tooling Committee
  • Aerospace Standard
  • AS23190/4D
  • Current
Published 2019-07-03 by SAE International in United States
No Abstract Available.
Datasets icon
Annotation icon