Your Selections

Air pollution
Emissions control
Three-way catalysts
Diesel exhaust emissions control
Evaporative emissions control systems (EVAP)
Exhaust gas recirculation (EGR)
Emissions measurement
Exhaust emissions
Carbon dioxide
Carbon monoxide
Diesel exhaust emissions
Nitrogen oxides
Particulate matter (PM)
Greenhouse gas emissions
Low emission vehicles (LEV) and zero emission vehicles (ZEV)
Refueling emissions
Volatile organic compounds
End-of-life vehicles
Environmental protection
Environmental law
Environmental regulations and standards
Environmental testing
Land pollution
Life cycle analysis
Noise pollution
Sun and solar
Sustainable development
Environmental technologies
Waste management
Water quality
Water pollution
Water reclamation
Water treatment
Weather and climate
Cold weather
Show Only


File Formats

Content Types












Energy Recovery Rate from an Electric Air-cycle System under the Cruising Altitude and Speed.

Akita University-Takahiro Adachi
  • Technical Paper
  • 2019-01-1905
To be published on 2019-09-16 by SAE International in United States
In this study, we focus on an electric air-cycle system in an electric aircraft, where the system has an electric compressor instead of a hydraulically-operated oil-based compressor. The electric compressor consumes the power to compress the rarefied air outside and take it in the system. The air goes through the air-cycle as a working fluid to exchange the heat and work. The main purpose of the air-cycle is to adjust the temperature and pressure in a cabin. Therefore, the working fluid of the air repeats compression and expansion. The working fluid passing through the cabin absorbs heat from the passengers and avionics. After that, the air is discharged outside with higher heat level and pressure levels. This means that the discharged air has a potential energy to recover the power consumption in the electric compressor. So, we have analytically estimated an energy recovery rate which is defined as a ratio of the potential energy of the discharged air to the energy consumption in the compressor, and shown the recovery rate under the condition of cruising…

The benefits of using Composite Bearings in Aircraft Shock Absorbers

Trelleborg Sealing Solutions-Brian Bowen, Torben A. Andersen
  • Technical Paper
  • 2019-01-1898
To be published on 2019-09-16 by SAE International in United States
This paper will use actual examples from aircraft recently introduced into service, to describe the main advantages of changing from the currently used metallic bearings, to composite bearings. Abstract: The introduction of composite bearing in a recently introduced twin aisle aircraft has resulted in: • Weight saving, by replacing bronze bearings with plastic bearings • Lowering of the particle count in the shock absorber oil, (Reduced contamination with metal particles) leading to reduced wear on seals and bearings. Qualification testing showed that Composite Bearings are able to provide longer service life than bronze bearings.

Electromagnetic Characteristic Comparison of Superconducting Synchronous Motors for Electric Aircraft Propulsion Systems

IHI Corporation-Hitoshi Oyori
The University of Tokyo-Yutaka Terao, Yusuke Ishida, Hiroyuki Ohsaki
  • Technical Paper
  • 2019-01-1912
To be published on 2019-09-16 by SAE International in United States
Aircraft service has been increasing today and it also results in the increase of the greenhouse gas emission. To solve this problem, the electric aircraft propulsion system is the key solutions to realize the clean and high efficiency aircraft, while demanding higher output density motors. So far, though 5 kW/kg is realized with permanent magnet type synchronous motors, the electric aircraft for over 100 passengers demands motors with 16 -20 kW/kg. Superconducting (S.C.) technology is one of the effective candidates for higher output density motors. In comparison with copper wires, the S.C. wires have higher current density at less than –200 ℃. And we can make a lighter weight coil with the S.C. wires. So far, many groups have been studying the S.C. motors over 16 kW/kg. Generally, there are two kinds of S.C motors. One is the S.C. motors made of the S.C. field coils and copper armature windings. The other is the fully S.C. motors using S.C. field and armature windings. We have been studying the fully S.C. motors with two kinds of…

Numerical investigation of Electrostatic Spray Painting Transfer Processes for vehicle Coating

Universidade Da Beira Interior-Mohammad Reza Pendar, Jose Pascoa
  • Technical Paper
  • 2019-01-1856
To be published on 2019-09-16 by SAE International in United States
In this study we examined numerically the electrostatic spray transfer processes in the rotary bell spray applicator, which is this case implemented in a full 3D representation. The algorithm implemented and developed for this simulation includes airflow, spray dynamics, tracking of paint droplets and an electrostatic modularized solver to present atomization and in-flight spray phenomena for the spray forming procedure. The algorithm is implemented using the OpenFOAM package. The shaping airflow is simulated via an unsteady 3D compressible Navier-Stokes method. Solver for particle trajectory was developed to illustrate the process of spray transport and also the interaction of airflow and particle that is solved by momentum coupling. As the numerical results in this paper indicates dominant operating parameter voltage setting, further the charge to mass ratio and air-paint flow rate deeply effect the spray shape and the transfer efficiency (TE). The spin of the bell forced the paint to fall off from the bell edge into the high-velocity airflow. By increasing the shaping airflow more uniform distribution of mass of paint is produced but the…

Optimization of CI Engine Performance and Emissions Fueled by Blends of Alternative Fuels Methyl Ester Using Taguchi and Multi Regression Analysis

Dr. D. Y.Patil Unitech Society's-Vijay javanjal
  • Technical Paper
  • 2019-01-1893
To be published on 2019-09-16 by SAE International in United States
Today’s frenetic engine manufacturing and transportation sector and its related traces viz; noise and vibration of our modern societies has adverse effect on environment as well as all of us. Modern research affords us the opportunity to understand the subject better and to develop advance technologies. Widely immediate slogan and goal of all industries might be to improve the performance and reduce emission using alternative fuel while, make the quietest and smoothest running Engines. To, reduce the dependency on diesel fuel (Due to rapid worldwide depletion) Biodiesel is one of the immediate, alternative and complimentary solution. In the Present study, to optimize the operating parameters of the Direct Injection Single Cylinder (5.2 kw) CI engine with respect to Brake Thermal Efficiency (BTE), Carbon monoxide (CO), Oxides of Nitrogen, Hydrocarbons (HC) etc.. For this investigation, we used Biodiesel as an alternate fuel for diesel fuel which possesses low cetane number which is not sufficient to operate existing diesel engine. However, this could be combined with the diesel fuel in the form of blends. For this investigation…

Analysis of a Coupling System of Aircraft Environmental Control and Fuel Tank Inerting Based on Membrane Separation

Beihang University-Weixing Yuan, Jiaqi Hou
CAPDI-Yan zheng
  • Technical Paper
  • 2019-01-1895
To be published on 2019-09-16 by SAE International in United States
This paper raises a coupling system of aircraft environmental control and fuel tank inerting based on membrane separation. The system applies a membrane dehumidifier to replace water vapor removal unit of heat regenerator, condenser and water separator, which is widely used in conventional aircraft environmental control system nowadays. Water vapor can travel across the membrane wall under its pressure difference without phase change, so the dehumidification process consumes no cooling capacity and the cooling capacity of the system increases. This paper first compares the thermodynamic properties of environmental control system based on membrane dehumidification and the environmental control system based on condensation. The results show that the membrane dehumidification system has bigger cooling capacity and lighter weight. For a given cooling capacity requirement of a certain aircraft, the membrane dehumidification system can use less bleed air since the temperature of the outlet air is lower. Nowadays, the fuel tanking inerting system also uses an air separation module to produce nitrogen enriched air based on membrane separation. After the air is dehumidified in membrane environmental control…

A Three-Layer Thermodynamic Model for Ice Crystal Accretion on Warm Surfaces: EMM-C

Rolls-Royce Plc-Geoffrey Jones, Benjamin Collier
University of Oxford-Alexander Bucknell, Matthew McGilvray, David Gillespie
Published 2019-06-10 by SAE International in United States
Ingestion of high altitude atmospheric ice particles can be hazardous to gas turbine engines in flight. Ice accretion may occur in the core compression system, leading to blockage of the core gas path, blade damage and/or flameout. Numerous engine powerloss events since 1990 have been attributed to this mechanism. An expansion in engine certification requirements to incorporate ice crystal conditions has spurred efforts to develop analytical models for phenomenon, as a method of demonstrating safe operation. A necessary component of a complete analytical icing model is a thermodynamic accretion model. Continuity and energy balances are performed using the local flow conditions and the mass fluxes of ice and water that are incident on a surface to predict the accretion growth rate. In this paper, a new thermodynamic model for ice crystal accretion is developed through adaptation of the Extended Messinger Model (EMM) from supercooled water conditions to mixed phase conditions (ice crystal and supercooled water). A novel three-layer accretion structure is proposed and the underlying equations described. The EMM improves upon the original model for…
Datasets icon
Annotation icon

Microwave Technique for Liquid Water Detection in Icing Applications

University of Oxford-Matthew McGilvray, David Gillespie
University of Southern Queensland-John Leis, David Buttsworth, Ramiz Saeed, Khalid Saleh
Published 2019-06-10 by SAE International in United States
The partial melting of ingested ice crystals can lead to ice accretion in aircraft compressors, but accurately measuring the relatively small fraction of liquid water content in such flows is challenging. Probe-based methods for detecting liquid water content are not suitable for deployment within turbofan engines, and thus alternatives are sought. Recent research has described approaches based on passive microwave sensing. We present here an approach based on active microwave transmission and reflection, employing a vector network analyzer. Utilization of both transmission and reflection provides additional data over and above emission or transmission only, and permits a more controllable environment than passive sensing approaches. The paper specifically addresses the question of whether such an approach is viable within the context of representative icing wind tunnel and engine flow conditions. A quasi-thermal equilibrium approach is presented herein to estimate the melting ratio during microwave analysis of samples at 0 °C. Experimental results using microwaves in the 2.45GHz region are presented, and post-processing methods investigated. This is followed by an investigation of detection limits for ice accretion…
Annotation icon

Simulation of Ice Particle Breakup and Ingestion into the Honeywell Uncertified Research Engine (HURE)

NASA Glenn Research Center-Ashlie Flegel, Michael King
Vantage Partners Limited-David L. Rigby, William Wright
Published 2019-06-10 by SAE International in United States
Numerical solutions have been generated which simulate flow inside an aircraft engine flying at altitude through an ice crystal cloud. The geometry used for this study is the Honeywell Uncertified Research Engine (HURE) which was recently tested in the NASA Propulsion Systems Laboratory (PSL) in January 2018. The simulations were carried out at predicted operating points with a potential risk of ice accretion. The extent of the simulation is from upstream of the engine inlet to downstream past the strut in the core and bypass. The flow solution is produced using GlennHT, a NASA in-house code. A mixing plane approximation is used upstream and downstream of the fan. The use of the mixing plane allows for steady state solutions in the relative frame. The flow solution is then passed on to LEWICE3D for particle trajectory, impact and breakup prediction. The LEWICE3D code also uses a mixing plane approximation at the boundaries upstream and downstream of the fan. A distribution of particle sizes is introduced upstream, based on the distribution measured during the test. Predicted collection…
Datasets icon
Annotation icon

ICICLE: A Model for Glaciated & Mixed Phase Icing for Application to Aircraft Engines

Rolls-Royce Plc-Geoffrey Jones, Benjamin Collier
University of Oxford-Alexander Bucknell, Matthew McGilvray, David Gillespie, Xin Yang
Published 2019-06-10 by SAE International in United States
High altitude ice crystals can pose a threat to aircraft engine compression and combustion systems. Cases of engine damage, surge and rollback have been recorded in recent years, believed due to ice crystals partially melting and accreting on static surfaces (stators, endwalls and ducting). The increased awareness and understanding of this phenomenon has resulted in the extension of icing certification requirements to include glaciated and mixed phase conditions. Developing semi-empirical models is a cost effective way of enabling certification, and providing simple design rules for next generation engines. A comprehensive ice crystal icing model is presented in this paper, the Ice Crystal Icing ComputationaL Environment (ICICLE). It is modular in design, comprising a baseline code consisting of an axisymmetric or 2D planar flowfield solution, Lagrangian particle tracking, air-particle heat transfer and phase change, and surface interactions (bouncing, fragmentation, sticking). In addition, an efficient particle tracking method has been developed into the code, which employs the representative particle size distribution at each injection location and a deterministic particle sticking method by using an in-situ particle based…
Datasets icon
Annotation icon