Your Selections

Design Engineering and Styling
Analysis methodologies
Failure analysis
Failure modes and effects analysis
Finite element analysis
Fuzzy logic
Mathematical analysis
Statistical analysis
CAD, CAM, and CAE
Calibration
Design processes
Vehicle integration
Downsizing
Measurements
Optimization
Rapid prototyping
Simulation and modeling
Computational fluid dynamics
Computer simulation
Hardware-in-the-loop
Mathematical models
Scale models
Vehicle styling
Virtual reality
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

Series

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Unsettled Domains Concerning Autonomous System Validation and Verification Processes

EllectroCrafts Aerospace-Fabio Alonso da Silva
  • Research Report
  • EPR2019012
To be published on 2019-12-20 by SAE International in United States
The Federal Aviation Administration (FAA) and the Department of Transportations' (DOT's) National Highway Traffic Safety Administration (NHTSA) face similar challenges regarding the regulation of autonomous systems powered by artificial intelligence (AI) algorithms that replace the human factor in the decision-making process. The validation and verification (V&V) processes contribute to the implementation of the correct system requirements. The V&V process is one of the steps of a development lifecycle starting with the definition of regulatory, marketing, operational, performance, and safety requirements. They define what a product is, and they flow down into lower level requirements defining control architectures, hardware, and software. The industry is attempting to define regulatory requirements and a framework to gain safety clearance of such products. This report suggests a regulatory text and a safety and V&V approach from an aerospace engineering perspective assessing the replacement of the human driver from the decision-making role by a computational system. This article suggests an approach where aerospace guidelines can be used alongside ISO 26262 in order to define a viable and valuable framework for autonomous…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Unsettled Technology Domains in Aerospace Additive Manufacturing Concerning Safety, Airworthiness, and Certification

Muelaner Engineering, Ltd.-Jody Muelaner
  • Research Report
  • EPR2019008
To be published on 2019-12-20 by SAE International in United States
Additive manufacturing (AM) is currently being used to produce many certified aerospace components. However, significant advantages of AM are not exploited due to unresolved issues associated with process control, feedstock materials, surface finish, inspection, and cost. Components subject to fatigue must undergo surface finish improvements to enable inspection. This adds cost and limits the use of topology optimization. Continued development of process models is also required to enable optimization and understand the potential for defects in thin walled and slender sections. Costs are high for powder-fed processes due to material costs, machine costs, and low deposition rates. Cost for wire-fed processes are high due to the extensive post-process machining required. In addition, these processes are limited to low-complexity features. Incremental improvements in all of these areas are being made but a step change could potentially be achieved by hybrid processes, which use wire feedstock to deposit the bulk of the part and powder for fine detail. NOTE: SAE EDGE™ Research Reports are intended to identify and illuminate key issues in emerging, but still unsettled, technologies…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Unsettled Technology Domains in Robotics for Automation in Aerospace Manufacturing

Muelaner Engineering, Ltd.-Jody Muelaner
  • Research Report
  • EPR2019010
To be published on 2019-12-20 by SAE International in United States
Cost reduction and increasing production rate are driving automation of aerospace manufacturing. Articulated serial robots may replace bespoke gantry automation or human operations. Improved accuracy is key to enabling operations such as machining, additive manufacturing, composite fabrication, drilling, automated program development and inspection. New accuracy standards are needed to enable process- relevant comparisons between robot systems. Accuracy can be improved through calibration of kinematic and joint stiffness parameters, joint output encoders, adaptive control that compensates for thermal expansion and feed- forward control that compensates for hysteresis and external loads. The impact of datuming could also be significantly reduced through modelling and optimization. High dynamic end-effectors compensate high-frequency disturbances using inertial sensors and reaction masses. Global measurement feedback is a high-accuracy turn-key solution, but it is costly and has limited capability to compensate dynamic errors. Local measurement feedback is a mature, affordable and highly accurate technology where the robot is required to position or align relative to some local feature. Locally clamped machine tools are an alternative approach that can utilize the flexibility of industrial robots…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Unsettled Issues in Balancing Virtual, Closed-Course, and Public-Road Testing of Automated Driving Systems

Silicon Valley Mobility-Sven Beiker
  • Research Report
  • EPR2019011
To be published on 2019-12-20 by SAE International in United States
This SAE EDGE™ Research Report identifies key unsettled issues of interest to the automotive industry regarding the challenges of determining the optimal balance for testing automated driving systems (ADS). Three main issues are outlined that merit immediate interest: First, determining what kind of testing an ADS needs before it is ready to go on the road; Second, the current, optimal, and realistic balance of simulation testing and real-world testing; Third, the challenges of sharing data in the industry. SAE EDGE™ Research Reports are preliminary investigations of new technologies. The three technical issues identified in this report need to be discussed in greater depth with the aims of, first, clarifying the scope of the industry-wide alignment needed, second, prioritizing the issues requiring resolution, and, third, creating a plan to generate the necessary frameworks, practices, and protocols. NOTE: SAE EDGE™ Research Reports are intended to identify and illuminate key issues in emerging, but still unsettled, technologies of interest to the mobility industry. The goal of SAE EDGE™ Research Reports is to stimulate discussion and work in the…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Fluid-Structure Interaction-Based Simulation Methods for Fluid Sloshing in Tanks

John Deere Technology Center India Pvt Ltd-Nitin Shelke, Amol Bade, Sourabh Mukhopadhyay
  • Technical Paper
  • 2019-01-5091
Published 2019-12-06 by SAE International in United States
One of the conventional approaches of structural analysis of containers or tanks accounting for fluid sloshing is based on the dynamic equilibrium of fluid in constant acceleration. This method does not account for the effect of structural deformation on fluid, which may affect the solution accuracy. During sloshing, the liquid exerts a dynamic force on the surrounding walls, which results in high strains at the welded joints of the tank and its mounting structure. This paper compares simulation techniques, which can handle highly nonlinear, dynamic, and random processes of sloshing motion, as well as tackle the variability due to other parameters such as tank motion and liquid depth. This paper discusses Coupled Eulerian-Lagrangian (CEL), smoothed-particle hydrodynamics (SPH), and fluid (computational fluid dynamics, CFD)-structural (finite element analysis, FEA) one-way coupled techniques through the simulation of the sloshing phenomenon in a tank using “Abaqus” software tools. The CEL and SPH capabilities allow for the interaction between the Lagrangian and Eulerian domain. Representing fluids by using Eulerian elements eliminates the problem of extreme element deformation associated with Lagrangian…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Unsettled Issues in Determining Appropriate Modeling Fidelity for Automated Driving Systems Simulation

Silicon Valley Mobility-Sven Beiker
  • Research Report
  • EPR2019007
Published 2019-12-06 by SAE International in United States
This SAE EDGE™ Research Report identifies key unsettled issues of interest to the automotive industry regarding the challenges of achieving optimal model fidelity for developing, validating, and verifying vehicles capable of automated driving. Three main issues are outlined that merit immediate interest:First, assuring that simulation models represent their real-world counterparts, how to quantify simulation model fidelity, and how to assess system risk.Second, developing a universal simulation model interface and language for verifying, simulating, and calibrating automated driving sensors.Third, characterizing and determining the different requirements for sensor, vehicle, environment, and human driver models.SAE EDGE™ Research Reports are preliminary investigations of new technologies. The three technical issues identified in this report need to be discussed in greater depth with the aims of, first, clarifying the scope of the industry-wide alignment needed; second, prioritizing the issues requiring resolution; and, third, creating a plan to generate the necessary frameworks, practices, and protocols.NOTE: SAE EDGE™ Research Reports are intended to identify and illuminate key issues in emerging, but still unsettled, technologies of interest to the mobility industry. The goal of…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Aircraft Fuel System Design Guidelines

AE-5A Aerospace Fuel, Inerting and Lubrication Sys Committee
  • Aerospace Standard
  • AIR7975
  • Current
Published 2019-12-05 by SAE International in United States

This document describes the major design drivers and considerations when designing a fuel system for a large commercial aircraft. It discusses the design at a system/aircraft level, and is not intended as a design manual for individual system components, though it does refer out to other SAE specifications where more detail on specific components and sub systems is given. It does include examples of a number of calculations associated with sizing of fuel systems, based on those given in NAV-AIR-06-5-504, as well as an appendix summarizing basic fluid mechanical equations which are key for fuel system design. It is acknowledged that most of these calculations would today be performed by modelling tools, rather than by hand, but it is considered important for the designer to understand the principles.

new

Control Strategy for Hybrid Electric Vehicle Based on Online Driving Pattern Classification

SAE International Journal of Alternative Powertrains

University of Alabama, USA-Zhengyu Yao, Hwan-Sik Yoon
  • Journal Article
  • 08-08-02-0006
Published 2019-12-04 by SAE International in United States
Hybrid Electric Vehicles (HEVs) are gaining popularity these days mainly due to their high fuel economy. While conventional HEV controllers can be classified into rule-based control and optimization-based control, most of the production vehicles employ rule-based control due to their reliability. However, once the rule is optimized for a given driving pattern, it is not necessarily optimal for other driving patterns. In order to further improve fuel economy for HEVs, this article investigates the feasibility of optimizing control algorithm for different driving patterns so that the vehicle maintains a high level of optimality regardless of the driving patterns. For this purpose, a two-level supervisory control algorithm is developed where the top-level algorithm classifies the current driving pattern to select optimal control parameters, and the lower level algorithm controls the vehicle power flow using the selected control parameters in a similar way to conventional supervisory controllers. To study the effectiveness of the proposed algorithm, a HEV model with a rule-based control algorithm is modified such that the control parameters are optimized for different driving patterns, and…
new

Fundamentals of GD&T 2018 3-day

  • Professional Development
  • ET1920024
Published 2019-12-03

This course teaches the terms, rules, symbols, and concepts of GD&T as prescribed in the ASME Y14.5-2018 Standard.

This course offers an in-depth explanation of geometric tolerancing symbols, their tolerance zones, applicable modifiers, common applications, and verification principles. The class includes a comparison of GD&T to the directly toleranced dimensioning method; Rules #1 and #2; form and orientation controls; tolerance of position; runout and profile controls. Newly acquired learning is reinforced throughout the class with more than 150 practice problems.  

Each attendee receives a Fundamentals of Geometric Dimensioning and Tolerancing 2018,  Using Critical Thinking Skills textbook by Alex Krulikowski (Based on the ASME Y14.5-2018)

Students who attend courses like this one walk away with more than knowledge - they gain on-the-job skills because the learning materials are performance-based and taught by industry professionals.

new

Modelling and Simulation of Vehicle Suspension System with Variable Stiffness Using Quasi-zero Stiffness Mechanism

SAE International Journal of Vehicle Dynamics, Stability, and NVH

University of Petroleum and Energy Studies, India-Mohit Saini
  • Journal Article
  • 10-04-01-0003
Published 2019-12-02 by SAE International in United States
The dynamics and comfort of a vehicle closely depends on the stiffness of its suspension system. The suspension system of a vehicle always had to trade-off between comfort and performance of a vehicle; since for comfort a softer suspension is preferred which in turn decreases the aerodynamics and cornering performance and increases the ride height of the vehicle; whereas in stiffer suspension the ride height can be lowered, but forces due to bumps are transferred all the way up to the drivers cabin. This article aims to design a vehicle suspension model with variable stiffness using quasi-zero stiffness (QZS) mechanism and study its force-displacement characteristics and minimize the fundamental stiffness of the suspension system. The model developed uses the principle of negative stiffness to achieve low stiffness for the softer suspension system. The mechanism designed comprises of a pushrod suspension system with three parallel springs attached to one end of the rocker arm, one primary coil spring is mounted perpendicular to the rocker arm and the other two secondary plate springs are attached to the…