Your Selections

Design Engineering and Styling
Analysis methodologies
Failure analysis
Failure modes and effects analysis
Finite element analysis
Fuzzy logic
Mathematical analysis
Statistical analysis
CAD, CAM, and CAE
Calibration
Design processes
Vehicle integration
Downsizing
Measurements
Optimization
Rapid prototyping
Simulation and modeling
Computational fluid dynamics
Computer simulation
Hardware-in-the-loop
Mathematical models
Scale models
Vehicle styling
Virtual reality
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

Series

 

Hypersonic flow simulation towards space propulsion geometries

Universidade Da Beira Interior-Odelma Teixeira, Jose Pascoa
  • Technical Paper
  • 2019-01-1873
To be published on 2019-09-16 by SAE International in United States
With the actual tendency of space exploration, hypersonic flight have gain a significant relevance, taking the attention of many researchers over the world. This work aims to present a numerical tool to solve hypersonic gas dynamic flows for space propulsion geometries. This will be done by validating the code using two well-known hypersonic test cases, the double cone and the hollow cylinder flare. These test cases are part of NATO Research and Technology Organization Working Group 10 validation of hypersonic flight for laminar viscous-inviscid interactions. During the validation process several important flow features of hypersonic flow are captured and compared with available CFD and numerical data. Special attention is taken to the phenomenon of vibrational excitation of the molecules. Different vibrational non-equilibrium models are used and compared with the available data. The pressure and the heat flux along the surfaces are also analyzed. The CFD simulation is conducted using an open-source CDF solver for hypersonic flows using the OpenFOAM framework. The two-temperature CFD solver, employing central-upwind interpolation schemes of Kurganov, Noelle e Petrova, hy2Foam, is…
 

Step & Repeat: Reduce Derivative Aircraft Development Risk with Design Reuse

Mentor, A Siemens Business-Muhammad Askar
  • Technical Paper
  • 2019-01-1871
To be published on 2019-09-16 by SAE International in United States
Designing derivative aircraft is a complex process with potentially large amounts of program risk. In this paper we present new technologies such as digital interface control documents, and generative design that can transform this process. Employing these types of technologies makes the process more verifiable and repeatable. The paper explains how the technologies can be adopted from the early definition of components & LRUs, to their aggregation into reusable subsystems, as well as the automation and validation processes that can be built around them to reduce the associated complexity and program risk.
 

Design and Experimental Verification of a High Force Density Tubular Permanent Magnet Linear Motor for Aerospace Application

Daido University-Yoshiaki Kano
  • Technical Paper
  • 2019-01-1911
To be published on 2019-09-16 by SAE International in United States
This paper presents the design and construction of a high force density tubular permanent-magnet (PM) linear motor. A strut structure of a tubular PM linear motor developed to improve resistance to impurities and structural rigidity is described. In the design, computationally efficient two-dimensional finite-element analysis is used to estimate the motor force density. The motor’s design is optimized for the major pole number/slot number combinations of 8/24, 16/24, 20/24, 28/24, 32/24, and 40/24. The optimized motor design of a three-phase 16/24 combination with one-layer winding achieved the highest force-to-mass density. The force-to-mass density of the designed motor is higher than that of the first prototype motor by a factor of 5. The validity of the proposed design method and the expected drive characteristics are experimentally verified using the prototype.
 

Optimization of automated airframe assembly process on example of A350 S19 splice joint

Airbus SAS-Elodie Bonhomme, Pedro Montero-Sanjuan
SPbPU-Sergey Lupuleac, Julia Shinder, Maria Churilova, Nadezhda Zaitseva, Valeriia Khashba
  • Technical Paper
  • 2019-01-1882
To be published on 2019-09-16 by SAE International in United States
The paper presents the numerical approach to simulation and optimization of A350 S19 splice assembly process. The main goal is to reduce the number of installed temporary fasteners while preventing the gap between parts from opening during drilling stage. The numerical approach includes computation of residual gaps between parts, optimization of fastener pattern and validation of obtained solution on input data generated on the base of available measurements. The problem is solved with ASRP (Assembly Simulation of Riveting Process) software. The described methodology is applied to the optimization of the robotized assembly process for A350 S19 section.
 

Statistical Process Control combined with a digital datalake usage is a scalable & automatisable mean to help for civil aircraft production rate increase

Project Management-Bernard Pierre RIBERE
  • Technical Paper
  • 2019-01-1881
To be published on 2019-09-16 by SAE International in United States
Aeronautical Industry faces several key challenges as far as the transport of passengers requires more and more vehicles every year. In the area of air transport, civil aircraft deliveries and in service availability have reached in the past year numbers which were not expected at the moment when the production and support industry were built. Talking about manufacturing of civil aircrafts, it is then needed to think about adapting the currently existing systems to be able to cope with the challenges as far as rate of production and recurring costs are concerned. Airbus plans to regularly, on a smooth mode, accelerate its production system to fulfil market’s expectations, securing in the same time both the safety and the quality of our aircrafts. On another hand, the digital revolution which is in application within Airbus provides with solutions of data storage, sorting and analysis, with purpose of contributing in a more adequate usage of information that each and every aircraft that Airbus manufactures may carry with himself, whatever during its manufacturing as well as its in…
 

Advanced assembly solutions for the RACER joined-wing configuration

University of Nottingham-David Bainbridge, Konstantinos Bacharoudis, Andrea Cini, Alison Turner, Atanas Popov, Svetan Ratchev
  • Technical Paper
  • 2019-01-1884
To be published on 2019-09-16 by SAE International in United States
The demonstrator project RACER is developed under the leadership of Airbus Helicopters Group within a large European partnership and concerns the development of new VTOL formula in order to fill the mobility gap between conventional helicopters and airplanes. Thus, RACER is a compound rotorcraft including wings and propellers. The new wing arrangement suggested by Airbus Helicopters Groups is defined as a staggered bi-plane configuration with an upper and a lower straight wing at each side of the helicopter, both being interconnected at their outermost tips, forming a triangular framework. Responsible for the design, manufacturing and assembly of the wings is ASTRAL consortium consisted of GE Aviation and University of Nottingham. The identification of the best strategy to assemble the joined wing configuration is quite challenging. In order to ensure that the final wing assembly will fit to the fuselage, a jig that simulates the fuselage was suggested by Airbus Helicopters Group. The main question raised during the assembly design and thus the objective of this work concerns whether the jig should be a one-piece structure…
 

Impact of Internal Vortex Generator Length on Wing Aerodynamics

Delhi Technological University-B B Arora, Pranav Bahl, Sourajit Bhattacharjee, Vishesh Kashyap
  • Technical Paper
  • 2019-01-1892
To be published on 2019-09-16 by SAE International in United States
Flow separation is among the major causes of aerodynamic drag experience by wings. Vortex generators are regularly used as a means of flow separation control in wings, their use leading to delayed flow separation and drag reduction. A disadvantage of external vortex generators has been observed to be high momentum loss and inefficiency in vortex generation. Internal vortex generators minimize the penalty of momentum loss and generate vortices closer to the surface. In this paper, the impact of the length of internal vortex generators on the aerodynamic characteristics of a wing have been investigated. Internal vortex generators have been placed at 30% chord distance on the suction side of a NACA 0012 airfoil. Analysis is carried out using the Computational Fluid Dynamics software ANSYS Fluent. The length of the vortex has been varied between H and 5H, H being the thickness of the boundary layer, at air flow Reynolds Number between 1,000,000 and 5,000,000. An optimum length of vortex generators for drag reduction is hence obtained.
 

Landing Gear Integration into Aircraft Structure in Early Design Stage

Bauhaus Luftfahrt EV-Ulrich Kling, Mirko Hornung
  • Technical Paper
  • 2019-01-1890
To be published on 2019-09-16 by SAE International in United States
The demanded development towards various emission reduction goals set up by several institutions forces the aerospace industry to think about new technologies and alternative aircraft configurations. With these alternative aircraft concepts, the landing gear layout is also affected. Turbofan engines with very high bypass ratios could increase the diameter of the nacelles extensively. In this case, mounting the engines above the wing could be a possible arrangement to avoid an exceedingly long landing gear. Thus, the landing gear could be shortened and eventually mounted at the fuselage instead of the wings. Other technologies such as high aspect ratio wings have an influence on the landing gear integration as well. To assess the difference, especially in weight, between the conventional landing gear configuration and alternative layouts a method is developed based on preliminary structural designs of the different aircraft components, namely landing gear, wing and fuselage. Simplified parametric finite element structural models for the different components are introduced. These models are used to investigate different aircraft configurations with special regard on the landing gear integration. The…
 

Numerical Analysis of a Cycloidal Rotor Under Diverse Operating Conditions and Altitudes

Universidade Da Beira Interior-Mehdi Habibnia Rami, Jose Pascoa
  • Technical Paper
  • 2019-01-1872
To be published on 2019-09-16 by SAE International in United States
The current paper deals with the numerical study of the downwash flowfield characteristics in a cycloidal rotor. In an aircraft equipped with this kind of thruster, the downwash flow plays significant role in different flight modes. The interaction of this downwash jet with ground in effective height levels is studied using CFD simulations. Several operating conditions like pitching oscillation angles, rotation speeds and height levels are all considered in this work. The results declare that close-ground operating states augments the efficiency of cyclorotor. The vertical and horizontal forces of a single blade is also analyzed in a complete cycloid in different operating conditions. A lead and lag in maximum and minimum extremes of force curves of a single blade cycloid is obtained while being subjected to different functional conditions. These results strongly assure that an active control of both pitching oscillation and rotation speed is essential in operating at the optimum desired state.
 

Flight Optimization Model on Global and Interval Ranges for Conceptual Studies of MEA Systems

Akita University-Yotsugi Shibuya
IHI Corporation-Hitoshi Oyori, Hirotaka Sugawara, Naoki Seki
  • Technical Paper
  • 2019-01-1906
To be published on 2019-09-16 by SAE International in United States
In development of more electric aircraft applications, it is important to discuss aircraft energy management on various level of aircraft operation. This paper presents a computationally efficient optimization model for evaluating flight efficiency on global and interval flight ranges. The model is described as an optimal control problem with an objective functional subjected to state condition and control input constraints along a flight path range. A flight model consists of aircraft point-mass equations of motion including engine and aerodynamic models. The engine model generates the engine thrust and fuel consumption rate for operation condition and the aerodynamic model generates the drag force and lift force of an aircraft for flight conditions. These models is identified by data taken from a published literature as an example. First, approximate optimization process is performed for climb, cruise, decent and approach as each interval range path. Next, optimization for global range path involves whole flight path to find optimal operation condition in the flight. In aircraft energy management, fuel consumption converts into not only thrust power, but power of…