Your Selections

Materials
Adhesives and sealants
Biomaterials
Ceramics
Chemicals
Inorganic chemicals
Coatings, colorants, and finishes
Composite materials
Corrosion
Electrolytes
Erosion
Fabrics
Fibers
Fluoride
Foams
Gases
Glass
Glass fibers
Graphite
Heat resistant materials
Insulation
Leather
Lightweight materials
Magnetic materials
Materials identification
Materials properties
Conductivity
Fatigue
Tensile strength
Tribology
Wear
Metals
Alloys
Aluminum alloys
Beryllium alloys
Casting alloys
Chromium alloys
Cobalt alloys
Copper alloys
Corrosion resistant alloys
Ferrous metals and alloys
Heat resistant alloys
Magnesium alloys
Nickel alloys
Nonferrous alloys
Silicon alloys
Tin alloys
Titanium alloys
Vanadium alloys
Wrought alloys
Zinc alloys
Aluminum
Beryllium
Calcium
Chromium
Copper
Ferrous metals
Iron
Steel
Advanced high-strength steels
Lithium
Magnesium
Manganese
Nickel
Potassium
Sodium
Titanium
Nanotechnology
Nanomaterials
Odors
Oxygen
Pharmaceuticals
Polymers
Elastomers
Plastics
Resins
Thermoplastics
Refractory materials
Refrigerants
Semiconductors
Smart materials
Superconductors
Textiles
Waste materials
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

Series

 

Self-Sensing, Lightweight and High Modulus Carbon Nanotube Composites for Improved Efficiency and Safety of Electric Vehicles

NoPo Nanotechnologies India Pvt Ltd-Aparna Allannavar
NoPo Nanotechnologies India Pvt, Ltd.-Gadhadar Changalaraya Reddy
  • Technical Paper
  • 2019-28-2532
To be published on 2019-11-21 by SAE International in United States
Carbon Composites (CFRP) have been touted to be an essential component of future automobiles due to their mechanical properties and lightweight. CFRP has been adopted successfully for secondary and primary structures in Aerospace industry. In Automobiles, they are incorporated in models like the BMW i-series. CFRP suffers from 2 major problems. Delamination of Composites leads to catastrophic and rapid failure which could be dangerous in passenger vehicles. Delamination occurs whenever there is a shock on the composite. Secondly, Composites need regular expensive maintenance to ensure that the material is intact and will not compromise passenger safety. Carbon Nanotubes in composites have shown a substantial increase in delamination resistance. A 0.1wt% addition of HiPCO® Single-walled Carbon Nanotube provides both self-sensing and improved fracture resistance. Here we report results of our work with NoPo HiPCO® Nanotubes with small amounts of Iron. 6K Carbon fiber was used as the fiber reinforcement. NoPo HiPCO® Nanotubes were reinforced in the Epoxy system by sonication. HiPCO® Nanotubes were produced using standard parameters. The coupons of CENCE composite were made using VARTM…
 

C123 Methodology for concept design of the Chassis Frame

Altair Engineering-AshithKumar Shetty
  • Technical Paper
  • 2019-28-2534
To be published on 2019-11-21 by SAE International in United States
Objective This paper explores the usage of Altair simulation driven concept process, C123 for developing the chassis frame of the SUV along with Multidisciplinary optimisation tool. C123 process is useful for strategic & systematic usage of optimisation to generate design alternatives, trade-off information, best balanced designs, design sensitivities, to actively support the concept development process on daily basis. Methodology C123 is used for developing initial concept design of the chassis frame of the SUV. C123 process is independent of vehicle architectures, manufacture process (e.g. extrusions, sheet metal) & material selection (e.g. metals, composites, mixed etc.) and platform sharing strategy. C1 process is used for identification of optimum Structural Layout, C2 is for rapid optimum Sizing of idealized Sections, C3 is used for detailed optimum Sizing of Manufacturable Sections. Automatic process is used for handling pre and post processing process very efficiently. Final refinement of the concept design (C3) will be carried out by considering all the possible critical load cases like Durability, stiffness, Modal Frequency & crash/Impact. Author is also explored usage of advanced high-strength…
 

Mechanical Property Evaluation of Paper Honeycomb reinforced Plastics

Hyundai Motor India Engineering PVT LTD-Vignesh balaji S G, Pradeep S, Aakash S K
  • Technical Paper
  • 2019-28-2538
To be published on 2019-11-21 by SAE International in United States
Mechanical Property Evaluation of Paper Honeycomb Reinforced Plastics Vignesh Balaji S G, Pradeep Hyundai Motor India Engineering Pvt. Ltd, Chennai. India Key Words: Paper Honeycomb, Epoxy Composites, Mechanical Properties, Tensile, Impact & Flexural Test Research and/or Engineering Questions/Objective : Composite Materials are widely being used in many engineering applications because of their desirable properties & Cost, Weight Effectiveness. They are widely being used as their Strength-Weight Ratio is Higher than any Other Material. Paper Honeycomb Material is basically a paper made of honeycomb shapes enforced between layers of Glass Mat. This paper deals with the evaluation of Tensile Strength, Flexural (Three-Point Bending) Strength & Flexural Modulus, Impact Strength of Paper Honeycomb Reinforced Epoxy Composites. The Scope of this Material defines the quality of Paper Honeycomb Reinforced Composites which can be used for Automotive Trim Parts. Methodology: Before beginning the tests, the specimens should be prepared and the steps for the preparation of paper honeycomb reinforced epoxy composites are shown below: 1. Mould Preparation 2. Mixing of Epoxy and Hardener with a ratio of 10:1 3.…
 

Antirodent Corrugated tube Development for Fuel tube Rat bite

Hyundai Motor India Engineering PVT LTD-GURUPACKIAM LAKSHMANARAJ
  • Technical Paper
  • 2019-28-2536
To be published on 2019-11-21 by SAE International in United States
Rat damages in automobiles/food crops/house hold things are extensive in India. Cases of Rat damages to Car Fuel tubes (plastic) and subsequent fuel leak problems are increasing in India.To protect the Fuel tube from rat bite , a more robust and easy assemble protection method is discussed. Hence Antirodent corrugated tubes are considered to protect fuel tube from rat bite. Antirodent masterbatch (3% ) were added to the corrugated tubes and lab test were done in CAZRI. Antirodent corrugated tubes tested with 2 different species showed better results compared to standard corrugated tubes
 

Design optimization for Engine mount

Prateek Sharma
VE Commercial Vehicles Ltd-Mahendra Parwal
  • Technical Paper
  • 2019-28-2540
To be published on 2019-11-21 by SAE International in United States
The mounting of an engine plays important role in controlling the vibration transmissibility, alignment of transmission unit within specific limit. Design of any mounting system mainly depends on stiffness, allowed deformation and transmissibility of force, natural frequency and size w.r.t space constraints etc. This paper helps to study the behavior of engine mount with different layer of rubber with defer stiffness. Firstly the design of front engine mount with single rubber layer according to space constraint in vehicle and then analysis is done to determine the deformation and various results using CAE technique. As per the results, design is modified with varying layer of rubber pad and again analysis is done with same boundary condition followed by improved results.
 

Characterization and Durability of Mold-In-Color Engineering Plastics

Mahindra & Mahindra, Ltd.-Sandeep Kumar Shukla
  • Technical Paper
  • 2019-28-2542
To be published on 2019-11-21 by SAE International in United States
Plastics are prone to photo oxidative and thermal oxidative degradation under usage conditions due to their chemical nature. From sustainability and cost standpoint, there is an increasing focus on Mold-In-Color (MIC) plastic materials. Simultaneously customer’s expectations on the perceived quality of these MIC parts has been increasing with attractive color and glossy appearance. A study was conducted to analyze the product quality and durability aspects over a prolonged exposure to accelerated weathering condition. Material selected for this study were injection molded specimens of ABS and PC/ABS used in automotive passenger vehicles. Comparative analysis was conducted before and after weathering exposure at defined intervals by using the various tools like Fourier Transform infra-red spectrometer (FTIR), thermogravimetric analyzer (TGA) and universal testing machine (UTM), Izod impact tester, dynamic mechanical analyzer (DMA) to understand the impact on their chemical and mechanical properties. This study will be useful in understanding material behavior, durability, performance and product quality.
 

Computerized Experimental Investigation on Performance & Exhaust Emission of Twin Cylinder Adiabatic Diesel Engine coated with YSZ

SVMIT Bharuch-Dr. Dipakkumar C. Gosai
SVNIT Surat-Anil Kumar Gillawat
  • Technical Paper
  • 2019-28-2548
To be published on 2019-11-21 by SAE International in United States
The fuel consumption and performance of the Internal Combustion engine is improved by adopting concepts of an adiabatic engine. An experimental investigation for different load conditions is carried out on a water-cooled, constant-speed, twin-cylinder diesel engine. This research is intended to emphasize energy balance and emission characteristic for standard uncoated base engine and adiabatic engine. The inner walls of diesel engine combustion chamber are thermally insulated by a top coat of Metco 204NS yttria-stabilized zirconia (Y2O3ZrO2) powder (YSZ) of a thickness of 350 mm using plasma spray coating technology. The same combustion chamber is also coated with TBC bond coats of AMDRY 962 Nickle chromium aluminum yttria of thickness of 150 mm. The NiCrAlY powder specially designed to produce coating’s resistance to hot corrosion. The combination of this ceramic material produces excellent high-temperature thermal barrier coating (TBC) resistant to thermal cycling stresses and strains. The engine valves, engine heads, and engine pistons were thermal barrier ceramic coated and computerized experimental results were compared to the base engine. Experimental results justified TBC engine to give a…
 

An alternate cost effective material for rocker arm used in heavy commercial vehicles

VE Commercial Vehicles Ltd-Kaarthic Kaundabalaraman, Suresh Kumar Kandreegula, Hemantkumar Rathi
VE Commercial Vehicles, Ltd.-Sonu Paroche
  • Technical Paper
  • 2019-28-2550
To be published on 2019-11-21 by SAE International in United States
Rocker arm in internal combustion engine is very important part which transfer the cam motion and force to the valve. In heavy commercial vehicles, the engine components are design for an infinite life (considerable higher than other components). Recently industries are working for light weight and optimized cost material. Hence it is required to have an optimized cost effective design of rocker arm without affecting its performance. A rocker arm should meet the stiffness and strength requirement. The objective of this study is to find out the alternate material for rocker arm which can provide the similar strength & stiffness as conventional rocker arm material. To achieve the performance and cost target, alternate material cast iron has been evaluated for rocker arm. Cast iron is lighter than the forged steel rocker arm, also it has a good frictional characteristic. Further bush is eliminated from the rocker arm assembly due to self-lubricant property of the cast iron rocker arm. This is significant reduce in cost of material and assembly procedure. A 2-d simulation and finite element…
 

Optimization of the critical parameters affecting the fuel lid performance

Maruti Suzuki India, Ltd.-PIYUSH KUMAR PAREEK
  • Technical Paper
  • 2019-28-2413
To be published on 2019-11-21 by SAE International in United States
Fuel lid is one of the parts which are mostly operated mechanically by the end user while filling the fuel. Therefore part design should be done in such a manner that it can be operated smoothly without any hassles. The conventional steel fuel filler doors are of two types: Three-piece type fuel filler doors also known as the dog-leg type and two-piece type fuel filler doors also known as the butterfly type. Both types of fuel filler doors have a pin that acts as a rotational hinge axis about which the fuel filler door opens and closes. Depending on the styling and shape of the side body outer, fuel lid type is decided. In the current study, dog-leg type fuel lid is considered. The factors that primarily affect the opening-closing performance are the weight of fuel lid, hinge axis, and the friction at the hinge area. The orientation of the hinge axis is derived from the profile of the side body outer panel. The fuel lid weight and hinge axis are decided in the initial…
 

REDUCTION OF STEERING VIBRATION WITH THE APPLICATION OF DYNAMIC TESTING AND ANALYSIS

John Deere India Pvt Ltd-amol pimpale, pankaj vaste, rohit pawar
John Deere India Pvt, Ltd.-Prashant Bardia
  • Technical Paper
  • 2019-28-2421
To be published on 2019-11-21 by SAE International in United States
KEYWORDS: Steering System, Engine Vibrations, Dynamics, Modal Testing, Modal Analysis, ABSTRACT - In modern agriculture, the tractor’s use is indispensable and essential for various operations like cultivation, soil preparation, pulverization and many more. However, despite being efficient machines, tractors may be subjected to different level of vibrations in various parts of their structure. The vibration often plays the key cause of invalidation and component failures and also, affecting the ride and comfort. Since it is known that such vibration factors can affect the behavior in many ways, an understanding of their dynamic response is warranted. In this paper, case study related to reduction of steering system vibration is presented. Objective and Background: Vibration reduction is linked with the reduction either at source or on path. For such, it is necessary to know the reality of machines, component and mechanisms to mitigate the vibration levels on the tractor. From the testing and analysis of the components, it is possible to calculate the dynamic properties and vibration average level. The vibration reduction decreases the damages caused by…