Your Selections

Human Factors and Ergonomics
Age groups
Adolescents
Adults
Aged
Children
Infants
Anthropometrics
Biological sciences
Bacteria
Comfort
Consumer preferences
Ergonomics
Human factors
Human machine interface (HMI)
Haptic / touch
Voice / speech
Kinematics
Life support systems
Medical, health, and wellness
Anatomy
Body regions
Arm
Foot
Hand
Head
Knee
Leg
Neck
Torso
Cardiovascular system
Digestive system
Fluids and secretions
Nervous system
Respiratory system
Diagnosis
Physical examination
Diseases
Medical equipment and supplies
Prostheses and implants
Sterilization
Psychiatry and psychology
Mental processes
Surgical procedures
Needs assessment
Reaction and response times
Vehicle accessibility
Vehicle occupants
Vehicle drivers
Driver behavior
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

Series

 

Line Side Equipment

Broetje-Automation Gmbh-Bertrand LAPORTE
  • Technical Paper
  • 2019-01-1879
To be published on 2019-09-16 by SAE International in United States
The aircraft production rate is now increasing and requires to keep the production tools as close as possible from the assembly work area. As production sites cannot be extended as much as the rate increases, this has created the need for developing innovative & efficient line side equipment, which fulfils storage capacity, ergonomical accessibility, easy handling & quick load unload performance for all aircraft part assemblies. This paper will focus on the development and the integration into the production on our innovative solutions on Line Side Equipment . The Line Side Equipment is custom designed and built for manual or semi-automated assembly lines. It offers a wide range of solutions such as dedicated storage areas, trolleys, easy acces, tool kits & smart cabinets.
 

Statistical Process Control combined with a digital datalake usage is a scalable & automatisable mean to help for civil aircraft production rate increase

Project Management-Bernard Pierre RIBERE
  • Technical Paper
  • 2019-01-1881
To be published on 2019-09-16 by SAE International in United States
Aeronautical Industry faces several key challenges as far as the transport of passengers requires more and more vehicles every year. In the area of air transport, civil aircraft deliveries and in service availability have reached in the past year numbers which were not expected at the moment when the production and support industry were built. Talking about manufacturing of civil aircrafts, it is then needed to think about adapting the currently existing systems to be able to cope with the challenges as far as rate of production and recurring costs are concerned. Airbus plans to regularly, on a smooth mode, accelerate its production system to fulfil market’s expectations, securing in the same time both the safety and the quality of our aircrafts. On another hand, the digital revolution which is in application within Airbus provides with solutions of data storage, sorting and analysis, with purpose of contributing in a more adequate usage of information that each and every aircraft that Airbus manufactures may carry with himself, whatever during its manufacturing as well as its in…
 

Overcoming Challenges in Connected Autonomous Vehicles Development: Open Source Vehicular Data Analytics Platform

CUCEK under CUSAT Kochi Kerala, INDIA-Shreya KRISHNA
  • Technical Paper
  • 2019-01-1914
To be published on 2019-09-16 by SAE International in United States
Data Science and Machine Learning are buzzwords in our everyday lives, as is evident from its applications, such as voice recognition features in vehicles and on cell phones, automatic facial and traffic sign recognition, etc. Analyzing big data on the basis of internet searches, pattern recognition, and learning algorithms, provides deep understanding of the behaviour of processes, systems, nature, and ultimately the people. The already implementable idea of autonomous driving is nearly a reality for many drivers today with the aid of “lane keeping assistance” and “adaptive cruise control systems” in the vehicle. The drift towards connected, autonomous, and artificially intelligent systems that constantly learns from big data and is able to make best-suited decisions, is progressing in ways that is fundamental to the growth of automotive industry. The paper envisages the future of connected and- autonomous-vehicles (CAVs) as computers-on-wheels. These are pictured as sophisticated systems with sensors on board as data sources and a lot of other functions and running services to support autonomous-driving. These services are considered to be computationally expensive. The unit…
 

Self-affinity of an Aircraft Pilot's Gaze Direction as a Marker of Visual Tunneling

Bordeaux University - IMB UMR CNRS 5251-Pierrick Legrand
Bordeaux University - INP Bordeaux - IMS-Jean-Marc André, Éric Grivel
  • Technical Paper
  • 2019-01-1852
To be published on 2019-09-16 by SAE International in United States
For the last few years, a great deal of interest has been paid to crew monitoring systems in order to address potential safety problems during a flight. They aim at detecting any degraded physiological and/or cognitive state of an aircraft pilot or crew, such as visual tunneling, also called inattentional blindness. Indeed, they might have a negative impact on the performance to pursue the mission with adequate flight safety levels. One of the usual approaches consists in using sensors to collect physiological signals which are then analyzed. Two main families exist to process the signals. The first one combines feature extraction and machine learning whereas the second is based on deep-learning approaches which require a large amount of labeled data. In this work, we focused on the first family. In this case, various features can be deduced from the data by different approaches: spectrum analysis, a priori modeling and nonlinear dynamical system analysis techniques including the estimation of the self-affinity of the signals. In this paper, our purpose was to uncover whether the self-affinity of…
 
new

Role of Dynamic Stiffness in Effective Isolation

Deere & Company-Yuzhen Yang
John Deere India Pvt, Ltd.-Balavardhan Reddy Dasabai
Published 2019-06-05 by SAE International in United States
In any machinery, avoiding noise and vibration completely is a difficult task due to the structural dynamic behaviors of components. To safeguard the operator, it is important to best isolate the operator station from NVH environment. Cabin isolation is an important aspect to minimize structure borne noise and tactile vibrations to be transferred into the cabin. Isolators are selected based on the isolation system inertial properties at mounting locations in the operating frequency range interested. The most important assumption to select isolators are that the active side and passive side of the isolators are nearly rigid so impedance mismatch is created for effective isolation.This paper describes the importance of dynamic stiffness of the structures on both the active and passive side for better NVH performance. NVH performance of passive side is evaluated analytically and computationally in terms of tactile vibrations and structure borne noise for various ratios of the dynamic stiffness over isolator stiffness. The isolator selection criterion is also discussed based on rigid body modes, operating frequency range, transmissibility ratio, and kinematic energy distributions.
Annotation icon
 
new

Developing a Custom Data Acquisition Software Package for a Self-contained Acoustic Test Facility

Kolano and Saha Engineers, Inc.-Richard Kolano, Sagar Patil, Pranab Saha
Published 2019-06-05 by SAE International in United States
This paper provides an overview of a custom software developed to obtain measurement data in a self-contained acoustic test facility system used for conducting random incidence sound absorption tests and sound transmission loss tests on small samples in accordance with SAE J2883 and J1400 standards, respectively. Special features have been incorporated in the software for the user to identify anomalies due to extraneous noise intrusion and thereby to obtain good data. The paper discusses the thoughts behind developing user-friendly algorithms and graphical user interfaces (GUI) for the sound generation, control, data acquisition, signal processing, and identifying anomalies.
Annotation icon
 
new

Sound Analysis Method for Warble Noise in Electric Actuators

General Motors-Nathan T. Parker
Published 2019-06-05 by SAE International in United States
Multiple automotive applications exist for small electric motors that are activated by vehicle occupants for various functions such as window lifts and seat adjusters. For such a motor to be described as high quality, not only should the sound it produces be low in amplitude, but it also needs to be free from pulsations and variations that might occur during its (otherwise) steady-state operation. If a motor’s sound contains pulsations or variations between 2 and 8 cycles per second, the variation is described as warble. To establish performance targets for warble noise at both the vehicle and component level a way to measure and quantify the warble noise must be established. Building on existing sound quality metrics such as loudness and pitch variation, a method is established by which processed sound data is put through a secondary operation of Fourier analysis. Thus warble can be reduced to a single value, and in this way, noise engineers have a basis to measure and report warble, and to facilitate product development with A/B comparisons. Depending on its…
Annotation icon
 
new

Assessment of Automotive Environmental Noise on Mobile Phone Hands-Free Call Quality

FEV North America, Inc.-Jeffrey Pruetz, Channing Watson, Todd Tousignant, Kiran Govindswamy
Published 2019-06-05 by SAE International in United States
Environmental noises such as wind, road, powertrain, and HVAC noise are important aspects to consider when implementing a hands-free terminal for mobile phone calling from within a car. Traditionally, these environmental noises have been exclusively considered for driver comfort; however, with the introduction of the hands-free terminals (HFT) and increasing consumer demand relative to mobile phone call quality, a broader implication of high background noise levels should be considered. HFT algorithm development and implementation can and does provide a high level of background noise suppression to mitigate these concerns, but this is often done at the expense of computational power and cumulative delay during a phone call. The more advantageous solution would be to address the problem from a source and path perspective with emphasis on reduction of noise in the frequency bands which most influence call quality performance. The assessments shown throughout this paper establish a sensitivity of HFT call quality to background noise levels based on industry-standard metrics, including those defined by International Telecommunication Union (ITU) standards. These assessments were established based on…
Datasets icon
Annotation icon
 
new

Fault Feature Extraction of Elliptically Shaped Bearing Raceway

South China University of Technology-Yingying Guo, Xuezhi Zhao
Published 2019-06-05 by SAE International in United States
The elliptically shaped bearing (ESB) with a rigid, elliptical inner race and a flexible, thin-walled outer race is the most easily damaged core component of harmonic drive. The ESB rotates under cycle load of alternating stress due to its special elliptic structure. Hence, the fault features of ESB such as fatigue spalling and pitting are apt to be concealed by the excitation of impulses caused by alternating between major axis and minor axis. In order to diagnose the fault on raceway surfaces of ESB, a new method of CMWT-FH based on Continuous Morlet Wavelet Transform (CMWT) and FFT-based Hilbert (FH) spectrum analysis is proposed to extract the fault feature. First, the formulas of feature frequency is deduced based on the geometry and kinematics characteristics of ESB; then the CMWT method is employed to decompose the fault signal of ESB; finally, the FH spectrum analysis is performed to extract the feature frequency of faulty ESB from the decomposition signal with the maximum kurtosis in the first several layers. Compared with the traditional FH method, the feature…
Datasets icon
Annotation icon
 
new

A Case Study on Golf Car Powertrain NVH Sources and Mitigation Methods

Club Car, LLC-Adam Clark
Roush Industries, Inc.-Steven Carter, Kenneth Buczek, Mayuresh Pathak
Published 2019-06-05 by SAE International in United States
The golf market has remained flat in North America. Whereas, it has grown worldwide. A trend is seen where the number of young adults and adults over the age of 65 years involved with the game has increased. The demographics in golf showing the most growth also have high standards for the operation of the golf car. They have transcended their expectations to align with some of the qualities expected of automobiles. There is a shift in consumer expectations. Moreover, the market competition has also increased. This drives the OEMs to deliver refined golf cars with NVH being a key aspect in development. This paper showcases a recent study to improve the powertrain N&V performance of an internal combustion engine golf car. Primarily, a test-based approach is followed. Chassis rolls and on road testing are performed for benchmarking and target setting. System and component tests are performed to root cause issues. The tests further help to provide input for mitigation methods for application on the golf cars. Structural modifications address structure-borne noise and perceived vibration.…
Datasets icon
Annotation icon