The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

Chassis
Braking systems
Air brakes
Brake components
Brake calipers
Brake cylinders
Brake discs
Brake drums
Brake fluids
Brake hoses
Brake lines
Brake linings
Brake linkages
Brake master cylinders
Brake pads
Brake pedals
Brake seals
Brake shoes
Brake torque
Disc brakes
Electronic brake controls
Electronic braking systems
Anti-lock braking
Brake-by-wire
Regenerative braking
Stability control
Traction control
Steering systems
Electronic steering control
Four wheel steering
Power steering
Rack and pinion steering
Steer-by-wire
Trajectory control
Suspension systems
Active suspension systems
Anti-roll
Dampers and shock absorbers
Electromagnetic suspension
Independent suspension
Passive suspension systems
Semi-active suspension systems
Springs
Suspension linkages
Tires
Tire friction
Traction
Wheels
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Reverse Engineering Method for Powertrain Parameters Characterization Applied to a P2 Plug-In Hybrid Electric Vehicle with Automatic Transmission

FEV Group GmbH-Alessandro Perazzo
Politecnico di Torino-Enrico Galvagno, Federico Millo, Giuseppe DiPierro, Mauro Velardocchia, Gianluca Mari
  • Technical Paper
  • 2020-37-0021
To be published on 2020-06-23 by SAE International in United States
Over the next decade, CO2 legislation will be more demanding and the automotive industry has seen in vehicle electrification a possible solution. This has led to an increasing need for advanced powertrain systems and systematic model-based control approaches, along with additional complexity. This represents a serious challenge for all the OEMs. This paper describes a novel reverse engineering methodology developed to estimate relevant but unknown powertrain data required for fuel consumption-oriented hybrid electric vehicle modelling. The main estimated quantities include high-voltage battery internal resistance, electric motor and transmission efficiency maps, torque converter and lock-up clutch operating maps, internal combustion engine and electric motor mass moment of inertia, and finally front/rear brake torque distribution. This activity introduces a list of limited and dedicated experimental tests, carried out both on road and on a chassis dynamometer, aiming at powertrain characterization thanks to a suitable post-processing algorithm. In this regard, the methodology was tested on a P2 architecture Diesel Plug-in HEV equipped with a 9-speed AT. voltage and current sensors are used to measure the electrical power exchanged…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Power Split Hybrid Propulsion System for Vehicles with Gearbox

Istituto Motori CNR-Luigi De Simio, Michele Gambino, Sabato Iannaccone
  • Technical Paper
  • 2020-37-0014
To be published on 2020-06-23 by SAE International in United States
New internal combustion engines (ICE) are characterised by increasing maximum efficiency, thanks to the adoption of strategies like Atkinson cycle, downsizing, cylinder deactivation, waste heat recovery and so on. However, the best performance is confined to a limited portion of the engine map. Moreover, electric driving in urban areas is an increasingly pressing request, but battery electric vehicles use cannot be easily widespread due to limited vehicle autonomy and recharging issues. Therefore, in order to reduce ICE vehicle fuel consumption, by decoupling the ICE running from road load, as well as permit energy recovery and electric driving, hybrid propulsion systems are under development. This paper analyses a new patent solution for power split hybrid propulsion system with gearbox. The system comprises an auxiliary power unit, adapted to store and/or release energy, and a planetary gear set which is interposed between the ICE and the gearbox. The system is characterized by a further device coupled with the ICE to modulate the resistance torque, in order to use the auxiliary power unit also for regenerative braking. The…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Reduction of the Effect of the Creep Groan Brake Excitation in a Comercial Vehicle

IDIADA Automotive Technology SA-Angel Sanchez
  • Technical Paper
  • 2020-01-1530
To be published on 2020-06-03 by SAE International in United States
One of the results generated by the stick-slip intermittent motion of a brake at the friction interface is the Creep Groan Noise which is a low frequency self-excited vibration, normally less than 220 Hz. This local vibration generated between the brake couple, is transmitted through the suspension system until the passengers of the vehicle in form of vibration and noise. This paper presents a methodology that combines testing and numerical models in order to 1) detect the source of the Creep Groan, 2) create a correlated numerical model and 3) produce countermeasures that reduce the amplitude of the noise at occupant positions. The vehicle under investigation was a commercial vehicle employing air-actuated brake drums. From testing, global vehicles modes and displacements under operational conditions were respectively investigated by means of Operational Deflection Shapes and Real Time Animation. These techniques allowed to prove the existence of a feedback loop with a positive gain that excites a suspension resonance mode, creating an unstable shaking effect in the whole vehicle. In-service data suggest that the brake actuation system…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Enhancement of Occupant Ride Comfort by GA Optimized PID Control Active Suspension System

Anna University-Arivazhagan Anandan, Arunachalam K
  • Technical Paper
  • 2020-01-1532
To be published on 2020-06-03 by SAE International in United States
The main objective of this work is to enhance the occupant ride comfort. Ride comfort is quantified in terms of measuring distinct accelerations like sprung mass, seat and occupant head. For this theoretical evaluation, a 7- degrees of freedom (DOF) human-vehicle-road model was established and the system investigation was limited to vertical motion. Besides, this work also focused to guarantee other vehicle performance indices like suspension working space and tire deflection. A proportional-integral-derivative (PID) controller was introduced in the vehicle model and optimized with the aid of the genetic algorithm (GA). Actuator dynamics is incorporated into the system. The objective function for PID optimization was carried out using root mean square error (RMSE) concept. The severity of various suspension indices and biomechanics responses of the developed model under proposed approach were theoretically analyzed using various road profiles and compared with conventional passive system. Furthermore, this work discussed the seat to head transmissibility ratio (STH) response to examine the severity of whole-body vibration (WBV). Subsequently, the respective performance measures were statistically analyzed using root mean square…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development of the Active Sound Generation Technology using Motor Driven Power Steering System

Hyundai Motor Co.-Kyoung-Jin Chang
Mdynamix AG-Leonhard Angerpointner, Dominik Schubert, Matthias Niegl
  • Technical Paper
  • 2020-01-1536
To be published on 2020-06-03 by SAE International in United States
As original engine sound is usually not enough to satisfy the driver’s desire for the sporty and fascinating sound, active noise control (ANC) and active sound design (ASD) have been great technologies in automobiles for a long time. However, these technologies which enhance the sound of vehicle using loud speakers or electromagnetic actuators etc. lead to the increase of cost and weight due to the use of external amplifier or external actuators. This paper presents a new technology of generating a target sound by the active control of a permanent magnet synchronous motor (PMSM) which is already mounted in vehicle. Firstly, an algorithm of this technology, called an active sound generation (ASG), is introduced with those signal conversion process, and then the high frequency noise issue and its countermeasure are presented. Secondly, ASG test bench is designed using a motor driven power steering (MDPS) system and then it is checked if ASG has any influence on an original function of MDPS. Thirdly, motor-induced vibration is measured in the transfer path and then the appropriate level…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Sliding Mode Controlled Half Car Suspension System with Magnetorheological Damper

Anna University-AROCKIA SUTHAN SOOSAIRAJ, ARUNACHALAM K
  • Technical Paper
  • 2020-01-1540
To be published on 2020-06-03 by SAE International in United States
Attenuation of vibrations caused by the road undulance conditions are tedious and very much related to human health and vehicle handling problems. One of the promised approaches to solving these problems in a vehicle suspension system is the use of effective controllers. In this paper, the sliding mode controller (SMC) is designed and used to control the magnetorheological (MR) damper. The performance of the proposed controller is verified by incorporating the controller in a half car vehicle suspension model. In a suspension damper design, Modified Bouc-Wen model is used to characterize the hysteretic behaviour of MR damper parameters. The voltage control algorithm is used to convert the desired force into the varied voltage input to the MR damper. The fail-proof advantage of MR damper is analysed by comparing the results of uncontrolled MR suspension with a passive system. In order to limit the pitch angle and to achieve the improved ride comfort and stability of the vehicle, the vertical displacement of the front and rear body of the half-car model is controlled by the SMC…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Characterisation of Brake Creep Groan Vibrations

Graz University of Technology-Peter Fischer, Manuel Pürscher, Severin Huemer-Kals
University of Ljubljana-Jurij Prezelj
  • Technical Paper
  • 2020-01-1505
To be published on 2020-06-03 by SAE International in United States
Creep Groan is an impulsive brake noise at very low velocities of the vehicle. Generally, stick-slip between brake disc and brake pads is assumed as the most dominating vibration mechanism of creep groan. This contribution will show by sophisticated measurement techniques, that stick-slip and speed dependent friction is an important trigger of this annoying vehicle noise. However, the overall vibration is much more complex than common stick-slip vibration models. It turns out, that in typical brake systems of passenger vehicles creep groan occurs around 15-20 Hz and 70-90 Hz. The mechanism at 15-20 Hz is an impulsive noise. Transitions between stick and slip phases trigger complex nonlinear vibrations of the complete brake and suspension system. At 70-90 Hz, the vibrations show a more harmonic-like behaviour, caused primarily by speed-dependent friction characteristics. Flexibilities in the suspension bushings, elastic deformations of suspension parts, wheel and tyre support the growth of instable self excited vibrations. In practical vehicle operation, the range of 70-90 Hz is the most relevant one. In many cases, the 15-20 Hz vibrations are not…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Noise-Vibration (NVH) Analysis & Reduction in Traction Motors-PMSMs at the Design Stage

Tata Motors, Ltd.-Vishwanatha K. Rao
  • Technical Paper
  • 2020-01-1509
To be published on 2020-06-03 by SAE International in United States
Various electric propulsion systems are used in the industrial field. Recently, research focused on permanent magnet synchronous motors (PMSMs) because of their several advantages. There are various method to reduce Noise and Vibration of traction at the Design Stage of Motor. Noise reduction has constituted a difficult study point for the last years. A great part of this acoustic noise has electromagnetic origin. The harmonic spectrum of the PWM voltage supply is very rich and every frequency has direct effects on the motor acoustics and also Various Torques effect on the Motor, In this paper, the Design Stage of Electric Motor Describe the Design Specifications and Calculations For reduce Harmonics and unwanted Torque (Electromagnetic Forces) for NVH reduction. Such as two winding methods for the interior permanent-magnet synchronous motor for vehicle traction: concentrated winding and distributed winding. Both have merits and demerits, and both influences the motor’s performance. Also the paper presents and analyses the experimental acoustic noise of AC motors controlled by drives using different PWM techniques. Five criteria are taken into account: motor…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Measurement of the Biodynamic Response of the Hand-Arm System and Study of its Influence on the Vibrational Response of the Steering Wheel

INSA Lyon-Etienne Parizet
PSA Group, INSA Lyon-luc laroche
  • Technical Paper
  • 2020-01-1548
To be published on 2020-06-03 by SAE International in United States
Driver’s hands modify the vibrational response of the steering wheel, so that car manufacturers are used to measure vibrations of the free steering wheel to ensure reproducibility. However, levels measured in this condition do not represent those perceived by the driver. The aim of this study is to predict the vibrational response of the hand-wheel coupled system from measurements of the non-held steering wheel, and of the mechanical impedance of the arm. The mechanical impedance of the hand-arm system is measured at three levels of vibration (0.5 2.5 and 5 m/s²) in two directions of excitation (along the arm and in the normal direction of the palm). The position of the arm and the hand grip are controlled to be as close as possible to a driving situation. For each condition, the mechanical impedance is calculated and compared to models of ISO 10068. The differences introduced between the response of the left and right hand are also investigated according to the preferred hand and anthropometric data. In a second step, a measurement of the vibrational…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Innovative Material Characterisation Methodology for Tyre Static and Dynamic Analyses

Applus + Idiada Group, Spain-Bharath Anantharamaiah
Applus IDIADA Group, Spain-Carlos Fidalgo
  • Technical Paper
  • 2020-01-1519
To be published on 2020-06-03 by SAE International in United States
Tyre structures are based on composite materials that constitute numerous layers, each providing specific properties to the tyre mechanic and dynamic behaviour. In principle, the understanding of the partial contributions of the individual layers requires knowledge of its mechanical properties. In case of non-availability of such critical information, it is difficult to perform tyre FE analyses. In the current work, a methodology is proposed to study the tyre static and dynamic behaviour to estimate its constituents properties based on the measured quasi-static responses of the tyre for certain specific loads. As a first step, a simplified tyre numerical model with standard rubber material properties is modeled that can substantively predict the necessary tyre static responses, i.e. radial, longitudinal and lateral stiffness. These responses are correlated with the physical tyre response that are measured using a kinematic and compliance (K&C) test rig in the laboratory. A Design of Experiments (DoE) study, followed by an optimization process, is performed by sampling the material properties of the rubbers to simulate the FE model and match the tyre responses…