Your Selections

Vehicles and Performance
Aerodynamics
Drag
Turbulence
Entry, descent, and landing
Lightweighting
Mobility
Motorsports
Racing vehicles
Vehicle acceleration
Vehicle dynamics /flight dynamics
Camber
Center of gravity (CG)
Moment
Pitch
Roll
Slip
Stall
Thrust
Yaw
Vehicle handling
Vehicle performance
Vehicle ride
Vehicles
Aircraft
Airships
Balloons
Business and general aviation aircraft
Commercial aircraft
Electric aircraft
Fixed-wing aircraft
Freighter aircraft
Gliders
Hypersonic and supersonic aircraft
Military aircraft
Rotary-wing aircraft
Helicopters
Unmanned aerial vehicles
Vertical take-off and landing (VTOL)
Automated Vehicles
Highly automated vehicles
Autonomous vehicles
Unmanned ground vehicles
Buses
Commercial vehicles
Agricultural vehicles and equipment
Construction vehicles and equipment
Industrial vehicles and equipment
Mining vehicles and equipment
Off-highway vehicles and equipment
Trailers
Concept vehicles
Electric vehicles
Fleets
Airline fleets
Rental car fleets
Taxi fleets
Trucking fleets
Vehicle sharing services
Fuel cell vehicles
Hybrid electric vehicles
Lawn vehicles and equipment
Marine vehicles and equipment
Military vehicles and equipment
Munitions
Missiles
Railway vehicles and equipment
Recreational vehicles and equipment
Rescue and emergency vehicles and equipment
Reusable launch vehicles and shuttles
Satellites
Spacecraft
Launch vehicles
Expendable launch vehicles
Trucks
Heavy trucks
Light trucks
Medium trucks
Two or three wheeled vehicles
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

Series

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Unsettled Topics Concerning Automated Driving Systems and the Transportation Ecosystem

Florida Polytechnic University-Rahul Razdan
  • Research Report
  • EPR2019005
To be published on 2019-11-25 by SAE International in United States
Over the last 100 years, the automobile has become integrated in a fundamental way into the broader economy. A broad and deep ecosystem has emerged, and critical components of this ecosystem include insurance, after-market services, automobile retail sales, automobile lending, energy suppliers (e.g., gas stations), medical services, advertising, lawyers, banking, public planners, and law enforcement. These components – which together represent almost $2 trillion of the United State economy – are in equilibrium based on the current capabilities of automotive technology. However, the advent of autonomous vehicles (AVs) and technologies like electrification have the potential to significantly disrupt the automotive ecosystem. The critical cog governing the rate and pace of this shift is the management of the test and verification of AVs. In this SAE Edge report, six senior industry leaders in the impacted ecosystems essay articles which describes sectors of the current automotive ecosystem and the manner in which AV technology can potentially reshape them – providing a mosaic of the massive infrastructure shifts which will be required to absorb autonomous vehicle technologies. NOTE:…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Unsettled Impacts of Integrating Automated Electric Vehicles into a Mobility-as-a-Service Ecosystem and Effects on Traditional Transportation and Ownership

International Transportation Innovation Center (ITIC)-Joachim Taiber
  • Research Report
  • EPR2019004
To be published on 2019-11-25 by SAE International in United States
The current business model of the automotive industry is based on individual car ownership, yet new ride sharing companies such as Uber and Lyft are well capitalized to invest in large, commercially operated, on-demand mobility service vehicle fleets. Car manufacturers like Tesla want to incorporate personal car owners into part time fleet operation by utilizing their commercial fleet service. These robotaxi-fleets can be operated profitably when the technology works in a reliable manner and regulators allow driverless operation. Although Mobility-as-a-Service (MaaS) models of private and commercial vehicles fleets can complement public transportation models, they may contribute to lower public transportation ridership and thus higher subsidies per ride. This can lead to inefficiencies in the utilization of existing public transportation infrastructure. MaaS platforms can also cause a reduced reliance on parking infrastructure (e.g., street parking lanes and parking garages) which can contribute to an improvement in overall traffic flow and a reduction in capital investment for commercial and residential real estate development. Urban planning can be better centered around the true mobility needs of the citizens…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Occupant Controlled Ventilation

Mahindra & Mahindra, Ltd.-Priyanka Marudhavanan
  • Technical Paper
  • 2019-28-2461
To be published on 2019-11-21 by SAE International in United States
Keywords-Coolant,Ventilation Research and/or Engineering Questions/Objective: Number of Occupants is the major parameter when we consider Air Conditioning System. The number of person who stays in the room may vary in the same way the person who travels in the automobile also vary throughout the distance. This is more prevalent in transportation system like bus, train and where lot of people will travel together and where dropping station in the vehicle is too frequent.In this type,operating A.C has to be varied Methodology: . Instead the number count in the vehicle will be monitored from time to time. Based on the number of count, the cabin has to be cooled or heated and accordingly corresponding power has to be drawn by the compressor from the engine. This human count can be detected based on the number of CO2 sensor located in the cabin. the amount of fresh air that should be added to a cabin can be controlled by a carbon dioxide level transmitter. When CO2 levels go up, fresh air is added until the CO2 levels…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Self-Sensing, Lightweight and High Modulus Carbon Nanotube Composites for Improved Efficiency and Safety of Electric Vehicles

NoPo Nanotechnologies India Pvt Ltd.-Gadhadar Changalaraya Reddy, Aparna Allannavar
  • Technical Paper
  • 2019-28-2532
To be published on 2019-11-21 by SAE International in United States
Carbon Composites (CFRP) have been touted to be an essential component of future automobiles due to their mechanical properties and lightweight. CFRP has been adopted successfully for secondary and primary structures in Aerospace industry. In Automobiles, they are incorporated in models like the BMW i-series. CFRP suffers from 2 major problems. Delamination of Composites leads to catastrophic and rapid failure which could be dangerous in passenger vehicles. Delamination occurs whenever there is a shock on the composite. Secondly, Composites need regular expensive maintenance to ensure that the material is intact and will not compromise passenger safety. Carbon Nanotubes in composites have shown a substantial increase in delamination resistance. A 0.1wt% addition of HiPCO® Single-walled Carbon Nanotube provides both self-sensing and improved fracture resistance. Here we report results of our work with NoPo HiPCO® Nanotubes with small amounts of Iron. 6K Carbon fiber was used as the fiber reinforcement. NoPo HiPCO® Nanotubes were reinforced in the Epoxy system by sonication. HiPCO® Nanotubes were produced using standard parameters. The coupons of CENCE composite were made using VARTM…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Machine Learning based Multi-objective Multidisciplinary Design Optimization (MMDO) for Lightweighting the Automotive Structures

Mahindra and Mahindra, Ltd.-Ranga Srinivas Gunti
  • Technical Paper
  • 2019-28-2424
To be published on 2019-11-21 by SAE International in United States
The present work involves Machine Learning (ML) based Multi-objective Multidisciplinary Design Optimization (MMDO) for lightweighting the automotive structures. The challenge in deployment of MMDO algorithms in solving real-world automotive structural design problems is the enormous time involved in solving full vehicle finite element models that involve large number of design variables and multiple performance constraints pertaining to vehicle dynamics, durability, crash and NVH domains. With the availability of powerful workstations and using the advanced Computer Aided Engineering (CAE) tools, it has become possible to generate huge sets of simulation data pertaining to multiple domains. In the present work, lightweigting of the vehicle structure is achieved, considered the vehicular hardpoint locations and the gages of the vehicle structures as the design variables and performance parameters pertaining to vehicle dynamics, structural durability, front-end intrusions during an IIHS offset impact test and the modal frequencies of few critical structural members as the constraint variables. Artificial Neural Networks (ANN) based algorithms were used for developing the predictive models of various performance parameters. The predictive models were then used to…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Ride- Comfort Analysis for Commercial Truck using MATLAB Simulink.

ARAI Academy-Sarnab Debnath
Automotive Research Association of India-Mohammad Rafiq Agrewale
  • Technical Paper
  • 2019-28-2428
To be published on 2019-11-21 by SAE International in United States
Ride Comfort forms a core design aspect for suspension and is to be considered as primary requirement for vehicle performance in terms of drivability and uptime of passenger. Maintaining a balance between ride comfort and handling poses a major challenge to finalize the suspension specifications. The objective of this project it to perform ride- comfort analysis for a commercial truck using MATLAB Simulink. First, benchmarking was carried out on a 4x2 commercial truck and the physical parameters were obtained. Further, a mathematical model is developed using MATLAB Simulink R2015a and acceleration- time data is collected. An experimentation was carried out on the truck at speeds of 20 kmph, 30 kmph, 40 kmph and 50 kmph over a single hump to obtain actual acceleration time domain data. The model is then correlated with actual test over a single hump. This is followed by running the vehicle on Class A, B & C road profiles to account for random vibrations. Similarly, a simulation is done on MATLAB Simulink and a correlation is established between simulated and actual…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Body Structure Strength Of Sleeper Coaches During Rollover Test As Per AIS 119

International Centre for Automotive Technology-Gopal Singh Rathore
  • Technical Paper
  • 2019-28-2567
To be published on 2019-11-21 by SAE International in United States
Bus passenger safety has always been a concern considering various impacts like side impact, front impact, rollover etc. happening in real life scenarios. Various standards have been formulated for simulating these conditions and with respect to rollover, standards like ECE-R66 are being used to understand the superstructure strength. In India, we have AIS-052 (bus body code) and AIS-031 specific for bus rollover testing. AIS-119 has been published for rollover testing of sleeper coaches with modifications in the survival space creation in sleeper coaches for berths. With physical testing being more expensive, CAE simulations are being considered as vital option which also helps in design modification in a lesser time. This paper discusses the scope of numerical simulation of sleeper coach rollover using an explicit dynamic solver RADIOSS to understand the structure deformations, survival space clearances/intrusions. The paper will describe the procedure for the numerical simulation starting from the CAD development, geometry clean up, meshing techniques, element formulations, CG measurement, input deck set up till the post processing of results. In order to validate the numerical…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Impact of Vehicle Electrification on Brake Design

Maruti Suzuki India, Ltd.-Vipul Gupta
  • Technical Paper
  • 2019-28-2499
To be published on 2019-11-21 by SAE International in United States
Electric vehicles have come full circle from being primary vehicle type in 19th century (much before IC powered vehicles) to 21st century where major stake holders in mobility have announced plans towards vehicle electrification. Apart from battery & powertrain system, braking system is area which will undergo major changes because of vehicle electrification. But Why? Major keywords are regenerative braking, increased vehicle weight, no or insufficient vacuum from engine and silent powertrains. This paper tries to outline potential impact on hydraulic brake system & its component design for M1 and N1 category of four wheelers with advent of vehicle electrification. Needless to say extent of change will vary depending upon extent of electrification and extent of recuperation during regenerative braking. Extent of electrification depends upon whether vehicle is range extender type hybrid vehicle, plug in hybrid vehicle, battery electric vehicle, fuel cell vehicle etc. Extent of electrification defines in turn extent of recuperation possible, extent of increase in vehicle weight, availability of vacuum and NVH of powertrains. Extent of recuperation is constrained by motor generator…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Performance Gains of Load Sensing Brake Force Distribution in Motorcycles

Force Motors-Apurva Chakraborty
  • Technical Paper
  • 2019-28-2426
To be published on 2019-11-21 by SAE International in United States
Commercial motorcycles and scooters incorporate independent circuits for front and rear brake actuation, thus precluding load dependent brake force distribution. In all cases of manual brake force modulation between the front and rear wheels, there is poor compensation for the changes in wheel loads on the account of longitudinal weight transfer, thus making it is challenging to provide an adequate braking force to each wheel. The ratio in which the braking force should be distributed between the front and the rear wheels is dependent on the motorcycle geometry, weight distribution, mechanical sizing of braking system components, and is a variable based on the deceleration. This connotes that a fixed value of front and rear braking forces can be optimized for only a narrow range of motorcycle’s deceleration. Maximum braking performance occurs just prior to wheel lockup, as a sliding tire provides less grip than a rolling tire. This is also the scenario when both the tires are doing the maximum work in decelerating the motorcycle. Therefore, an optimal brake force distribution is one that locks…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Multi body dynamic simulation of tyre traction trailer

International Centre for Automotive Technology-Gopal Singh Rathore
  • Technical Paper
  • 2019-28-2430
To be published on 2019-11-21 by SAE International in United States
Tyre Traction Trailer is a device designed to find the Peak Brake co-efficient of C2 and C3 tyre as per ECE R117. The trailer is towed by the truck and is braked suddenly to evaluate braking co-efficient of specimen tyre. It is a single wheel trailer equipped with load cell to capture tire loads (Normal and longitudinal)while braking. Traction Trailer is modelled in MSC Adams and rigid body simulation is carried out for static stability of the system. Dynamic simulations were performed to understand locking of wheels during braking. Body frame was further modelled as flex body to perform structural analysis of the frame. The paper contains stress and deformation plots of trailer Structure under various loading conditions, change in Centre of gravity, weight transfer and forces on springs during braking and cornering, plots of tractive and normal load on tyre during braking.