The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

Vehicles and Performance
Entry, descent, and landing
Racing vehicles
Vehicle acceleration
Vehicle dynamics /flight dynamics
Center of gravity (CG)
Vehicle handling
Vehicle performance
Vehicle ride
Business and general aviation aircraft
Commercial aircraft
Electric aircraft
Fixed-wing aircraft
Freighter aircraft
Hypersonic and supersonic aircraft
Military aircraft
Rotary-wing aircraft
Unmanned aerial vehicles
Vertical take-off and landing (VTOL)
Automated Vehicles
Highly automated vehicles
Autonomous vehicles
Unmanned ground vehicles
Commercial vehicles
Agricultural vehicles and equipment
Construction vehicles and equipment
Industrial vehicles and equipment
Mining vehicles and equipment
Off-highway vehicles and equipment
Concept vehicles
Electric vehicles
Airline fleets
Rental car fleets
Taxi fleets
Trucking fleets
Vehicle sharing services
Fuel cell vehicles
Hybrid electric vehicles
Lawn vehicles and equipment
Marine vehicles and equipment
Military vehicles and equipment
Railway vehicles and equipment
Recreational vehicles and equipment
Rescue and emergency vehicles and equipment
Reusable launch vehicles and shuttles
Launch vehicles
Expendable launch vehicles
Heavy trucks
Light trucks
Medium trucks
Two or three wheeled vehicles
Show Only


File Formats

Content Types











   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Multidisciplinary Investigation of Truck Platooning

Altair-Bastian Schnepf, Christian Kehrer, Christoph Maeurer
  • Technical Paper
  • 2020-37-0028
To be published on 2020-06-23 by SAE International in United States
In the age of environmental challenges and with it, the demand for increasing energy efficiency of commercial vehicles, truck platooning is discussed as a promising approach. The idea is several trucks forming an automated convoy – with the lead truck sending out acceleration, braking and steering signals for the following trucks to react accordingly. The benefits address fuel savings, traffic capacity, safety requirements and convenience. In our study, we will motivate why platooning requires a multidisciplinary approach in the sense of connecting different modeling and simulation methods. The simulation topics covered are aerodynamic analysis, vehicle-to-vehicle (V2V) communication, radar antenna placement and virtual drive cycle test for the energetic evaluation of a truck platoon in comparison to a single truck. Aerodynamic analyses are conducted using a transient Lattice Boltzmann approach on GPUs capturing the complex vehicle wake interactions for different platooning distances with acceptable computational effort. Thereby, a generic truck convoy, consisting of three vehicles, is considered for distance intervals between 7 and 40 meters. From these computations for each vehicle look-up-tables are derived for interpolation…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Identification of Automotive Cabin Design Parameters to Increase Electric Vehicles Range, Coupling CFD-Thermal Analyses with Design for Six Sigma Approach

FCA ITALY S.p.A.-Andrea Alessandro Piovano, Giuseppe Scantamburlo, Massimo Quaglino, Matteo Gautero
  • Technical Paper
  • 2020-37-0032
To be published on 2020-06-23 by SAE International in United States
The ongoing global demand for greater energy efficiency plays an essential role in the vehicle development, especially in case of electric vehicles (EVs). The thermal management of the full vehicle is becoming increasingly important, since the Heating, Ventilation, and Air Conditioning (HVAC) system has a significant impact on the EV range. Therefore the EV design requires new guidelines for thermal management optimization. In this paper, an advanced method is proposed to identify the most influential cabin design factors which affect the cabin thermal behavior during a cool down drive cycle in hot environmental conditions. These parameters could be optimized to reduce the energy consumption and to increase the robustness of the vehicle thermal response. The structured Taguchi’s Design for Six Sigma (DFSS) approach was coupled with CFD-Thermal FE simulations, thanks to increased availability of HPC. The first control factors selected were related to the thermal capacity of panel duct, dashboard, interior door panels and seats. Surface IR emissivity and solar radiation absorptivity of these components were then added to the study. Car glass with absorptive…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Heat Pumps for BEVs: Architectures and Performance Analysis

Centro Ricerche Fiat SCpA-Walter Ferraris, Federica Bettoja, Mauro Casella, Matteo Rostagno, Angela Tancredi
  • Technical Paper
  • 2020-37-0030
To be published on 2020-06-23 by SAE International in United States
Electric vehicles have never been more popular, yet fears around being left stranded by an exhausted battery remain a key reason why some car buyers resist making a purchase. Bigger batteries are not always the solution because of the direct link with higher costs and high impact on weight. A re-engineering of the most energy-consuming auxiliaries is mandatory and the thermal management function is on top of the redesign request list. Heat Pump solution is considered one of the best way to save energy and reduce the impact on vehicle range of heating and cooling function, but the automotive application requires a careful definition of the system features to avoid unjustified growing up of complexity as well as an unneeded system over-sizing. The paper aims to give an overview on the heat pump design best practices through a virtual performance comparison of different lay-out configurations, which have been selected starting from a benchmark analysis crossed with a detailed vehicle segment-oriented functions selection. Control strategies role, costs, and target requirements have been used as drivers for…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Multitarget Evaluation of Hybrid Electric Vehicle Powertrain Architectures considering Fuel Economy and Battery Lifetime

McMaster University-Phillip Kollmeyer, Ali Emadi
Politecnico di Torino-Pier Giuseppe Anselma, Giovanni Belingardi
  • Technical Paper
  • 2020-37-0015
To be published on 2020-06-23 by SAE International in United States
Hybrid Electric Vehicle (HEV) powertrains are characterized by a complex design environment as a result of both the large number of possible layouts and the need for dedicated energy management strategies. When selecting the most suitable hybrid powertrain architecture at early design stage of HEVs, engineers usually focus on fuel economy (directly linked to tailpipe emissions) and vehicle drivability performance solely. However, high voltage batteries are a crucial component of HEVs as well in terms of performance and cost. This paper introduces a multitarget assessment framework for HEV powertrain architectures which considers both fuel economy and battery lifetime. A multi-objective formulation of dynamic programming is initially presented as off-line optimal HEV energy management strategy capable of predicting both fuel economy performance and battery lifetime of HEV powertrain layout options. Subsequently, three different HEV powertrain architectures are considered as test cases for the developed HEV assessment methodology including parallel P2, series-parallel P1P2 and power-split layouts. A comparison of numerical results for the three HEV powertrain test cases is then performed in terms of optimal fuel economy…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Fuel Consumption and Emission Reduction for Hybrid Electric Vehicles with electrically heated Catalyst

TU Dresden-Frank Atzler
TU Muenchen-Georg Wachtmeister
  • Technical Paper
  • 2020-37-0017
To be published on 2020-06-23 by SAE International in United States
Hybridization is a promising way to further reduce the CO2 emissions of passenger vehicles. However, high engine efficiencies and the reduction of engine load, due to torque assist by an electric motor, cause a decrease of exhaust gas temperature levels. This leads to an increased time to light-off of the catalysts resulting in an overall lower efficiency of the exhaust aftertreatment system. Especially in low load driving conditions, at cold ambient temperatures and on short distance drives, the tailpipe pollutant emissions are severely impacted by these low efficiency levels. To ensure lowest emissions at all driving conditions, catalyst heating methods must be used. In conventional vehicles internal combustion engine measures, e.g. late combustion can be applied. A hybrid system with an electrically heated catalyst enables further methods such as the increase of engine load, the so-called load point shifting by the electric motor or using the energy from the battery for electric catalyst heating. Since these methods result either directly or indirectly in additional fuel consumption there is a conflict of objectives between a fast…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Reverse Engineering Method for Powertrain Parameters Characterization Applied to a P2 Plug-In Hybrid Electric Vehicle with Automatic Transmission

FEV Group GmbH-Alessandro Perazzo
Politecnico di Torino-Enrico Galvagno, Federico Millo, Giuseppe DiPierro, Mauro Velardocchia, Gianluca Mari
  • Technical Paper
  • 2020-37-0021
To be published on 2020-06-23 by SAE International in United States
Over the next decade, CO2 legislation will be more demanding and the automotive industry has seen in vehicle electrification a possible solution. This has led to an increasing need for advanced powertrain systems and systematic model-based control approaches, along with additional complexity. This represents a serious challenge for all the OEMs. This paper describes a novel reverse engineering methodology developed to estimate relevant but unknown powertrain data required for fuel consumption-oriented hybrid electric vehicle modelling. The main estimated quantities include high-voltage battery internal resistance, electric motor and transmission efficiency maps, torque converter and lock-up clutch operating maps, internal combustion engine and electric motor mass moment of inertia, and finally front/rear brake torque distribution. This activity introduces a list of limited and dedicated experimental tests, carried out both on road and on a chassis dynamometer, aiming at powertrain characterization thanks to a suitable post-processing algorithm. In this regard, the methodology was tested on a P2 architecture Diesel Plug-in HEV equipped with a 9-speed AT. voltage and current sensors are used to measure the electrical power exchanged…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Impact of Thermal Management of the Three-Way Catalyst on the Energy Efficiency of a P2 Gasoline FHEV

Università del Salento-Marco Benegiamo, Andrea Valletta, Antonio Carlucci
Università di Roma Tor Vergata-Vincenzo Mulone
  • Technical Paper
  • 2020-37-0019
To be published on 2020-06-23 by SAE International in United States
Gasoline Full Hybrid Electric Vehicles (FHEVs) are recognized as a cost-effective solution to comply with upcoming emissions legislation. However, several studies have highlighted that frequent start-and-stops worsen the HC tail-pipe emissions, especially when the light-off temperature of the three-way catalyst (TWC) has not been reached. In fact, strategies only addressing the minimization of fuel consumption tend to delay engine activation and hence TWC warming, especially during urban driving. Goal of the present research is therefore to develop an on-line powertrain management strategy accounting also for TWC temperature, in order to reduce the time needed to reach TWC light-off temperature. A catalyst model is incorporated into the model of the powertrain where torque-split is performed by an adaptive equivalent consumption minimization strategy (A-ECMS). The developed A-ECMS operates on a domain of power-split combinations between electric machine and internal combustion engine, which, aside from satisfying the torque demand, also ensure a controlled ICE torque derivative as well as a controlled ICE start-and-stop frequency. Hence, the algorithm which is extended for TWC thermal management, incorporates a penalty on…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Simplified Cost-effective Aftertreatment System for Electrified Diesel Applications

Exothermia SA-Dimitrios Karamitros, Christos Avgerinos, Stavros Skarlis, Grigorios Koltsakis
GM Global Propulsion System-Giuseppe Previtero, Fransesco Bechis
  • Technical Paper
  • 2020-37-0023
To be published on 2020-06-23 by SAE International in United States
The Diesel powertrain remains an important CO2 reduction technology in specific market segments due to its inherent thermodynamic combustion efficiency advantages. Diesel powertrain hybridization can bring further potential for CO2 emissions reduction. However, the associated reduction in the exhaust gas temperature may negatively impact the performance of the exhaust aftertreatment (EAT) system and challenge the abatement of other emissions, especially NOx. Considering that active urea-SCR systems may be required to ensure compliance with the legislative limits, the total cost of the hybrid Diesel powertrain is expected to increase even more, therefore making it less commercially attractive. We present a model-based analysis of a 48V Diesel mild hybrid electric vehicle (MHEV) which is combined with an exhaust aftertreatment (EAT) system using Lean-NOx trap (LNT) technology. The overall de-NOx performance is further enhanced with the addition of passive SCR catalysts to benefit from the on-board ammonia formation during rich combustion events. Since the modeling framework is fully physico-chemically informed, it allows the investigation of various topologies, catalyst geometrical and chemical properties. Moreover, the model includes a simplified…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Assessment of the Potential of Power to Gas Fuels for Replacement of Fossile Fuels in Switzerland

EMPA-Panayotis Dimopoulos Eggenschwiler, Florian Kiefer, Karin Schröter, Christian Bach
  • Technical Paper
  • 2020-37-0027
To be published on 2020-06-23 by SAE International in United States
In Switzerland, road traffic is responsible for one third of greenhouse gas emissions respectively 40% of the CO2 emissions and therefore accounts for the largest single share of all sectors. These emissions have even increased slightly since 1990 (from 15.5 to 16.2 million tCO2). Private individual road transport achieves a mileage of approximatively 91.0 billion pkm (person-kilometer) and 17.2 billion tkm (tons-kilometer) per year. Therefore, 3.3 billion liters of gasoline and 3.2 billion liters of diesel are used, resulting in 16.2 million tCO2 emissions in total. Thereof, 10.2 million tons of CO2 are emitted by passenger cars and 1.7 million tons by trucks, the two most important means of transport concerning CO2 emissions. The rest is produced by vans, buses, motorcycles, railways and shipping, national air traffic and fuel tourism. The passenger cars are the most relevant application in terms of CO2 emissions with a share of 63% of the road vehicle CO2 emissions. To comply with the 95 g/km target, low CO2 vehicles have to be introduced. In the following, the number of such…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Energy Management for Electric Vehicle Application: Energy Demand for Cabin Comfort

FCA Italy S.p.A.-Antonio Tarzia
  • Technical Paper
  • 2020-37-0031
To be published on 2020-06-23 by SAE International in United States
The rapid development of CO2 reduction policies pushes an equivalent effort by the OEM to design and produce Battery Electric Vehicles (BEV) in order to lower the global CO2 emission of its fleet. The main effort has been done primarily to the electric traction architecture (electric traction motor and battery energy storage). Anyway, the BEV autonomy range is still a weak point and this is even more critical when the customer operates the air conditioning system to reach and maintain the cabin comfort. The aim of this work is to present how the cabin design have to evolve in order to allow the reduction of the energy demand by the Air conditioning system allowing the vehicle to increase the autonomy range.