Your Selections

Aerospace
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

Series

SAE International Journal of Aerospace

  • Journal
  • V129-1EJ
To be published on 2020-05-29 by SAE International in United States
No Abstract Available.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Integrated Regenerative Braking System and Anti-lock Braking System for Hybrid Electric Vehicles & Battery Electric Vehicles

Ford Motor Company-Yixin Yao, Yanan Zhao, Mark Yamazaki
  • Technical Paper
  • 2020-01-0846
To be published on 2020-04-14 by SAE International in United States
Regenerative braking in hybrid electric vehicles is a critical feature to achieve the maximum fuel economy benefit of hybridization. In order to maximize energy recuperation, it is desired to enable regenerative braking during an Anti-lock Braking System (ABS) event. For certain driveline configurations with a single electric motor connected to the axle shaft through an open differential, it has been observed that the regenerative braking torque can increase the wheel slip during the ABS operation, and significantly impact vehicle dynamics. This negative effect introduced by regen braking during ABS control may also lead to hardware failures, such as breaking a drive shaft. This paper describes development of an integrated regenerative braking and ABS control for hybrid and electric drive vehicles, referred to as RBS-ABS Event Control. This control is intended for drivelines containing a single electric motor connected to the axle shaft through an open differential. The design objectives are to recuperate the maximum amount of kinetic energy during an ABS event, and to provide no degraded anti-lock control behavior as seen in vehicles with…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Energy Efficient Maneuvering of Connected and Automated Vehicles

Southwest Research Institute-Sankar Rengarajan, Scott Hotz, Jayant Sarlashkar, Stanislav Gankov, Piyush Bhagdikar, Michael C. Gross, Charles Hirsch
  • Technical Paper
  • 2020-01-0583
To be published on 2020-04-14 by SAE International in United States
Onboard sensing and external connectivity using Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I) and Vehicle-to-Everything (V2X) technologies will allow a vehicle to "know" its future operating conditions with some degree of certainty, greatly narrowing prior information gaps. The increased development of such Connected and Automated Vehicle (CAV) systems, currently used mostly for safety and driver convenience, presents new opportunities to improve the energy efficiency of individual vehicles. The NEXTCAR program is one such initiative by the Advanced Research Projects Agency – Energy (ARPA-E) to developed advanced vehicle dynamics and powertrain control technologies that leverage such connected information streams. Southwest Research Institute (SwRI) in collaboration with Toyota and University of Michigan is currently working on improving energy consumption of a Toyota Prius Prime 2017 by 20%. This paper provides an overview of the various algorithms that have been developed to achieve the energy consumption target. A breakdown of how individual algorithms contribute to the overall target is presented. The team built a specialized test-bed called CAV dynamometer that integrates a traffic simulator and a hub dynamometer for testing the…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development and Application of a Collision Avoidance Capability Metric

AAA Northern California Nevada & Utah-Paul Wells, Atul Acharya
Dynamic Research Inc.-Jordan Silberling, Joseph Kelly, John Lenkeit
  • Technical Paper
  • 2020-01-1207
To be published on 2020-04-14 by SAE International in United States
This paper describes the development and application of a newly developed metric for evaluating and quantifying the capability of a vehicle/controller (e.g., Automated Vehicle or human driver) to avoid collisions in nearly any potential scenario, including those involving multiple potential collision partners and roadside objects. At its core, this Collision Avoidance Capability (CAC) metric assesses the vehicle’s ability to avoid potential collisions at any point in time. It can also be evaluated at discrete points, or over time intervals. In addition, the CAC methodology potentially provides a real-time indication of courses of action that could be taken to avoid collisions. The CAC calculation evaluates all possible courses of action within a vehicle’s performance limitations, including combinations of braking, accelerating and steering. Graphically, it uses the concept of a “friction ellipse”, which is commonly used in tire modeling and vehicle dynamics as a way of considering the interaction of braking and turning forces generated at the tire contact patches. When this concept is applied to the whole vehicle, and the actual or estimated maximum lateral and…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A dynamic trajectory planning for automatic vehicles based on improved discrete optimization method

Chongqing University-Pengyun Zeng, Zheng Ling
  • Technical Paper
  • 2020-01-0120
To be published on 2020-04-14 by SAE International in United States
The dynamic trajectory planning problem for automatic vehicles in complex traffic scenarios is investigated in this paper. A hierarchical motion planning framework is developed to complete the complex planning task. An improved dangerous potential field in the curvilinear coordinate system is constructed to describe the collision risk of automatic vehicles accurately instead of the discrete Gaussian convolution algorithm. At the same time, the driving comfort is also considered in order to generate an optimal, smooth, collision-free and feasible path in dynamics. The optimal path can be mapped into the Cartesian coordinate system simply and conveniently. Furthermore, a velocity profile considering practical vehicle dynamics is also presented to improve the safety and the comfort in driving. The effectiveness of the proposed dynamic trajectory planning is verified by numerical simulation for several typical traffic scenarios.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Leveraging real-world driving data sets for design and impact evaluation of energy efficient control strategies.

General Motors LLC-Bharatkumar Hegde, Steven E. Muldoon
National Renewable Energy Laboratory-Michael O'Keefe, Jeffrey Gonder
  • Technical Paper
  • 2020-01-0585
To be published on 2020-04-14 by SAE International in United States
Modeling and simulation are crucial in the development of advanced energy efficient control strategies. Utilizing real-world driving data as the underlying basis for control design and simulation lends veracity to projected real-world energy savings. Standardized drive cycles are limited in their utility for evaluating advanced driving strategies that utilize connectivity and on-vehicle sensing, primarily because they are non-causal and are typically intended for evaluating emission and fuel economy under controlled conditions. Real-world driving data, because of its scale, is a useful representation of various road types, driving styles, and driving environments. The scale of real-world data also presents challenges in effectively using it in simulations. A fast and efficient simulation methodology is necessary to handle the large number of simulations performed for design analysis and impact evaluation of control strategies. In this study, we present two methods of leveraging real-world data in both design optimization of energy efficient control strategies and in evaluating the real-world impact of those control strategies upon large-scale deployment. Through these methodologies, strategies with highest impact on energy savings were selected…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Smart Measuring System for Vehicle Dynamics Testing

Politecnico di Torino-Enrico Galvagno, Stefano Mauro, Stefano Pastorelli, Antonio Tota
  • Technical Paper
  • 2020-01-1066
To be published on 2020-04-14 by SAE International in United States
A fast measurement of the car handling performance is highly desirable to easily compare and assess different car setup, e.g. tires size and supplier, suspension settings, etc. Instead of the expensive professional equipment normally used by car manufacturers for vehicle testing, the authors propose a low cost solution that is nevertheless accurate enough for comparative evaluations. The paper presents a novel measuring system for vehicle dynamics analysis, which is based uniquely on the sensors embedded in a smartphone and completely independent on the signals available through vehicle CAN bus. Data from tri-axial accelerometer, gyroscope, GPS and camera are jointly used to compute the typical quantities analyzed in vehicle dynamics applications. In addition to signals like yaw rate, lateral and longitudinal acceleration, vehicle speed and trajectory, normally available when working with Inertial Measurement Units (IMU) equipped with GPS, in the present application also the steering wheel angle is measured by artificial vision algorithms that use the phone camera.. The latter signal, besides being important for identifying the maneuver imposed by the driver, it enables the usage…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Thermal Analysis of Parallel Connected Li-Ion Batteries For Hybrid Aircraft

Anadolu University-Hikmet Karakoç
Howard University-Nadir Yilmaz
  • Technical Paper
  • 2020-01-0891
To be published on 2020-04-14 by SAE International in United States
Improving the energy performance of batteries will certainly increase the reliability of electric aircraft and thus their penetration into the market. To achieve this goal, battery management systems are required to keep the temperature below the safety limits and make the temperature distribution as even as possible within the battery pack and cells. Li-ion batteries are suitable for electric aircraft due to their high specific energy and advantage of energy density. In this study, 20 14.6 Ah prismatic batteries were connected in 2 parallel 10 series. Three-dimensional thermal analysis was performed for forced and natural transport conditions under 4 different discharge rates (0.5C, 1C, 2C, 2.5C) of the batteries. The study was conducted with Ansys Fluent. The NTGK Empirical model was chosen and a simple algorithm was used. A second order upwind method was chosen for pressure, momentum and energy equations. Batteries were tested for mesh independency. When the number of nodes in natural transport was increased from 43,204 to 345,560, the change in heat transfer was 0.1%. As the current rate given to the…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

An investigation into the Traction and Anti-Lock Braking System Control Design

Ford Motor Company-Ming Kuang, Rajit Johri, Jose Velazquez Alcantar
University of California Davis-Louis Filipozzi, Francis Assadian
  • Technical Paper
  • 2020-01-0997
To be published on 2020-04-14 by SAE International in United States
Wheel slip control is crucial to active safety control systems such as Traction Control System (TCS) and Anti-lock Braking System (ABS) that ensure the vehicle safety by maintaining the wheel slip in a stable region. For this reason, a wide variety of control methods has been implemented by both researchers and in the industry. Moreover, the use of new electro-hydraulic, electro-mechanical brakes and in-wheel electric motors allow for a finer control of the slip, which should further improve the vehicle dynamics and safety. In this paper, we compare two methods for wheel slip control: a loop-shaping Youla parametrization method, and a sliding mode control method. Each controller is designed based on a simple single wheel system. The benefits and drawbacks of both methods are adressed. Finally, the controller performance and stability robustness are then compared based on several metrics in a simulation using a high-fidelity vehicle model with several driving scenarios.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Connected Controls and Optimization System for Vehicle Dynamics and Powertrain Operation on a Light-Duty Plug-in Multi-Mode Hybrid Electric Vehicle

Michigan Technological University-Joseph Oncken, Joshua Orlando, Pradeep K. Bhat, Brandon Narodzonek, Christopher Morgan, Darrell Robinette, Bo Chen, Jeffrey Naber
  • Technical Paper
  • 2020-01-0591
To be published on 2020-04-14 by SAE International in United States
This paper presents an overview of the connected controls and optimization system for vehicle dynamics and powertrain operation on a light-duty plug-in multi-mode hybrid electric vehicle developed as part of the DOE ARPA-E NEXTCAR program by Michigan Technological University in partnership with General Motors Co. The objective is to enable a 20% reduction in overall energy consumption and a 6% increase in electric vehicle range of a plug-in hybrid electric vehicle through the utilization of connected and automated vehicle technologies. Technologies developed to achieve this goal were developed in two categories, the vehicle control level and the powertrain control level. Tools at the vehicle control level include Eco Routing, Coordinated Adaptive Cruise Control (CACC), Eco Approach and Departure (EcoAND) and in-situ vehicle parameter characterization. Tools at the powertrain level include PHEV mode blending, predictive drive-unit state control, and non-linear model predictive control powertrain torque split management. These tools were developed with the capability of being implemented in a real-time vehicle control system. As a result, many of the developed technologies have been demonstrated in real-time…