Search
Advanced Search
of the following are true
(
)

Results

Items (212,678)
This specification covers a nickel alloy in the form of wire, rod, strip, foil, tape, and powder and a viscous mixture (paste) of the powder in a suitable binder
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an aluminum alloy in the form of plate 1.500 to 6.000 inches (38.10 to 152.40 mm) in nominal thickness (see 8.6
AMS D Nonferrous Alloys Committee
This SAE Standard was prepared by Technical Committee 1, Engine Lubrication, of SAE Fuels and Lubricants Council. The intent is to improve communications among engine manufacturers, engine users, and lubricant marketers in describing lubricant performance characteristics. The key objective is to ensure that a correct lubricant is used in each two-stroke-cycle engine
Fuels and Lubricants TC 1 Engine Lubrication
This SAE Standard provides testing and functional requirements to meet specified minimum performance criteria for electronic probe-type leak detectors. The equipment specified here will identify smaller refrigerant leaks when servicing motor vehicle air conditioning systems, including those engineered with improved sealing and smaller refrigerant charges to address environmental concerns and increase system efficiency. This document does not address any safety issues concerning the equipment design or use beyond that of sampling a flammable refrigerant, save those described in 3.1 and 3.2 of this document. All requirements of this standard shall be verified in SAE J2911
Interior Climate Control Service Committee
This SAE Standard establishes the test procedures, performance requirements, and criteria necessary to evaluate minimum safety and reliability requirements of a children’s snowmobile as identified in 1.2
Snowmobile Technical Committee
This SAE Standard provides test procedures, requirements, and guidelines for a parking lamp
Signaling and Marking Devices Stds Comm
This SAE Recommended Practice applies to off-road, self-propelled work machine categories of earthmoving, forestry, road building and maintenance, and specialized mining machinery as defined in SAE J1116
Machine Technical Steering Committee
The information in this SAE Recommended Practice has been compiled by Technical Committee 1 (Engine Lubrication) of the SAE Fuels and Lubricants Division. The intent is to provide those concerned with the design and maintenance of two-stroke-cycle engines with a better understanding of the properties of two-stroke-cycle lubricants. Reference is also made to test procedures which may be used to measure the chemical and physical characteristics of these lubricants
Fuels and Lubricants TC 1 Engine Lubrication
Instructions on this chart are intended to be used as a ready reference by personnel responsible for servicing off-road self-propelled work machines described in SAE J1116, categories 1, 2, 3, and 4. Detailed maintenance and service guidelines are reserved for maintenance, operator, and lubrication manuals as defined in SAE J920
Machine Technical Steering Committee
This SAE Recommended Practice describes the basic content requirements, barcode specifications, and functional test specifications of the vehicle identification number (VIN) label. On the vehicle, the VIN label is to be mounted in a readily accessible location for use of a barcode scanning device
VIN - WMI Technical Committee
The scope of this document is to provide an overview and guidance to enable and monitor the use of Digital Thread data standards and the quantification of digital tread efficacy with the Digital Thread Qualitative Index. This document does not standardize the process. However, it does provide a methodology to determine efficiencies and inefficiencies of Digital Thread utilization across various phases of the product lifecycle
G-31 Digital Transactions for Aerospace
This specification covers the requirements for self-sealing, quick-disconnect couplings for fuel and oil system components
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
The scope of this document is to provide an overview, process, and implementation guidance on use of blockchain technology for a secure, immutable, and traceable digital authorized release certificate. This document does not standardize the process nor is it meant for authorities to recognize the standard as an acceptable means of recording data collected through the required authorized release certificate (ARC) tags
G-31 Digital Transactions for Aerospace
This AIR provides commonly used design considerations for using composite component parts as secondary structures in landing gear applications
A-5B Gears, Struts and Couplings Committee
This standard provides the recommended requirements for electrostatic spray application of AMS3143 powder coatings to aerospace components. Adherence to these requirements will facilitate satisfactory performance of the applied powder coating
AMS G8 Aerospace Organic Coatings Committee
The AS6224 specification covers environment resistant, permanent insulation repair sleeves for repairing different types of insulation damages of wire or cable jackets in installed applications. The repair sleeve is intended to repair damaged primary wire or cable jacket covers where the shielding and wire conductors are not damaged
AE-8C2 Terminating Devices and Tooling Committee
This SAE Aerospace Recommended Practice (ARP) provides recommended practices for the calibration and acceptance of icing wind tunnels to be used in testing of aircraft components and systems and for the development of simulated ice shapes. This document is not directly applicable to air-breathing propulsion test facilities configured for the purposes of engine icing tests, which are covered in AIR6189. This document also does not provide recommended practices for creating Supercooled Large Drop (SLD) or ice crystal conditions, since information on these conditions is not sufficiently mature for a recommended practice document at the time of publication of ARP5905A. Use of facilities as part of an aircraft’s ice protection Certification Plan should be reviewed and accepted by the applicable regulatory agency prior to testing. Following acceptance of a test plan, data generated in these facilities may be submitted to regulatory agencies for use in the certification of aircraft ice
AC-9C Aircraft Icing Technology Committee
This document includes requirements of installations of adequate landing and taxiing lighting systems in aircraft of the following categories: a Single engine personal and/or liaison type b Light twin engine c Large multiengine propeller d Large multiengine turbojet/turbofan e Military high-performance fighter and attack f Helicopter This document will cover general requirements and recommended practices for all types of landing and taxi lights. More specific recommendations for LED lights in particular can be found in ARP6402
A-20B Exterior Lighting Committee
This SAE Standard applies to off-road self-propelled work machines as categorized in SAE J1116. Fast fill fueling typically applies to self-propelled machines with a fuel capacity over 380 L, although fast fill fueling can be used on machines with smaller fuel capacity
Machine Technical Steering Committee
This SAE Recommended Practice establishes a procedure for the issuance and assignment of a World Manufacturer Identifier (WMI) on a uniform basis to vehicle manufacturers that may desire to incorporate it in their Vehicle Identification Numbers (VIN). This recommended practice is intended to be used in conjunction with the recommendations for VIN systems described in SAE J853, SAE J187, SAE J272, and other SAE reports for VIN systems. These procedures were developed to assist in identifying the vehicle as to its point of origin. It was felt that review and coordination of the WMI by a single organization would avoid duplication of manufacturer identifiers and assist in the identification of vehicles by agencies such as those concerned with motor vehicle titling and registration, law enforcement, and theft recovery
VIN - WMI Technical Committee
This SAE Standard details procedures for testing lead-acid SLI (starting, lighting, and ignition), heavy-duty, EV (electric vehicle), and RV (recreational vehicle) batteries, to determine the effectiveness of the battery venting system to retard the propagation of an externally ignited flame of battery gas into the interior of the battery under sustained overcharge conditions. NOTE: At this time, 2018, there is no known comparable ISO Standard
Starter Battery Standards Committee
This standard specifies a method for testing and measuring the deflection of friction materials assemblies and compressibility of friction materials. This standard applies to disc brake pad assemblies and its coupons or segments, brake shoe lining and its coupons or segments, and brake blocks segments used in road vehicles. This SAE test method is consistent in intent with the ISO 6310 and the JIS 4413
Brake Linings Standards Committee
This SAE Information Report establishes a consistent procedure for measuring and analyzing the natural sway response of a particular trailer when attached to a particular vehicle under specific loading and operating conditions. This test procedure applies, but is not limited to, passenger cars, vans, light/medium-duty trucks as tow vehicles, and semitrailers with a Gross Vehicle Weight Rating (GVWR) of 11794 kg (26000 pounds) or less. Other applications include full trailers, tow dollies, tow bars, and the like. Other articulated vehicles can utilize this test procedure as long as the test does not exceed the linear behavior of the system. This test procedure does not apply to motorcycles towing trailers
Trailer Committee
This SAE Recommended Practice defines the worldwide human physical dimensions to be used in construction, general purpose industrial, agricultural tractors, forestry and specialized mining machinery categories as defined in SAE J1116 JUN86
HFTC1, Controls, Visibility, Anthropometrics, Accessibility
This compilation of terms, acronyms and symbols was drawn from usage which should be familiar to those working in automotive electronics reliability. Terms are included which are used to describe how items, materials and systems are evaluated for reliability, how they fail, how failures are modeled and how failures are prevented. Terms are also included from the disciplines of designing for reliability, testing and failure analysis as well as the general disciplines of Quality and Reliability Engineering. This glossary is intended to augment SAE J1213, Glossary of Automotive Electronic Terms
Vehicle Architecture For Data Communications Standards
This procedure provides a method of determining a benchmark SgRP position for adjustable Driver’s seats in Class A vehicles where the design intent information is not available. Class A vehicles include passenger cars, multipurpose passengervehicles, and vans with Seat Heights (H30) greater than 127 mm and less than 405 mm for the purposes of this document. Once the Driver’s Seat Benchmark SgRP is determined other seating positions can be readily benchmarked based on the standard procedures. This document references installation procedures using the SAE J826 H-point Machine. If desired the document can be adapted to use the HPM-II by substituting the appropriate SAE J4002 instatllation procedures. In that case, the use of the HPM-II should be clearly documented. Since the SgRP is the basis for many interior benchmark dimensions this information can be used to assess or compare vehicle interiors in a standard repeatable way based on the packaging limitations of the property
Human Accom and Design Devices Stds Comm
The scope of this SAE Information Report is confined to wind-tunnel testing, although it is recognized that many aspects of the aerodynamic characteristics of road vehicles can be investigated in other test facilities (such as water-tanks) or, especially, on the road. For example, coastdown testing is often used to determine aerodynamic drag (either in isolation or as part of the total resistance), and artificial gust generators are used to investigate the sensitivity of vehicles to cross-wind gusts. Also excluded from the present Report are climatic wind-tunnel tests of road vehicles, which are defined in more detail in Section 3. The Report covers the aerodynamic requirements of a wind-tunnel for automotive testing, together with the facility equipment needed and the requirements affecting the test vehicle or model. The test methods and procedures described here include those for six-component force measurements and measurements of pressures and velocities both on the vehicle/model
Road Vehicle Aerodynamics Forum Committee
This SAE Recommended Practice covers the application of primary wiring distribution system harnesses to automotive, and Motor Coach vehicles. This is written principally for new vehicles but is also applicable to rewiring and service. It covers the areas of performance, operating integrity, efficiency, economy, uniformity, facility of manufacturing and service. This practice applies to wiring systems of less than 50 V
Cable Standards Committee
This standard1 describes the chemical, mechanical, and dimensional requirements for a wide range of wrought copper and copper alloys used in the automotive and related industries
Metals Technical Committee
This information report is intended to give general data on the properties of aluminum and information on working, joining, forming, machining, finishing, and heat treating of aluminum
Metals Technical Committee
These recommended practices are applicable for lubrication components and systems supplied on machines and equipment used in the automotive industry; for the purpose of this document, any equipment dispensing lubricant used in manufacturing and/or assembly processes. These practices do not apply to injection of pneumatic components
Manufacturing Division
This document establishes the requirements for technical content and format of hydraulic system diagrams. This document does not establish configuration requirements, material, or performance requirements for any system or component identified herein
Ship Fluid Systems Committee
This SAE Battery Identification and Cross Contamination Prevention document is intended to provide information that may be applicable to all types of Rechargeable Energy Storage System (RESS) devices. It is important to develop a system that can facilitate sorting by chemistry. The recycler is interested in the chemistry of the RESS. This is true for the recyclers of Lead Acid, Lithium Ion, Nickel Cadmium etc. Thus recyclers of RESS will receive RESS from automotive, commercial, and industrial applications. These RESS have the potential to be contaminated with a RESS of an incompatible chemistry. It is recognized that mitigation methods to reduce or eliminate the introduction of incompatible chemistries into a given recycling stream would also benefit safety and the environment
Battery Standards Recycling Committee
This SAE Recommended Practice describes a test method for determining the vertical force and deflection properties of a non-rolling tire and the associated contact patch length and width. The method applies to any tire so long as the equipment is properly scaled to conduct the measurements for the intended test tire. The data are suitable for use in determining parameters for road load models and for comparative evaluations of the measured properties in research and development. NOTE: Herein, road load models are models for predicting forces applied to the vehicle spindles during operation over irregular pavements. Within the context of this Recommended Practice, forces applied to the pavement are not considered
Vehicle Dynamics Standards Committee
This SAE Recommended Practice describes a test method for determining properties of a non-rolling tire quasi-statically enveloping either a set of triangular cleats or a single step cleat. In the case of the triangular cleats the normal force and vertical deflection of the non-rolling tire are determined. In the case of the step cleats the normal force, longitudinal force, and vertical deflection of the non-rolling tire are determined. The method applies to any tire so long as the equipment is properly sized to correctly conduct the measurements for the intended test tire.1 The data are intended for use in determining parameters for road load models and for comparative evaluations of the measured properties in research and development. NOTE: Herein, road load models are models for predicting forces applied to the vehicle spindles during operation over irregular pavements. Within the context of this document, forces applied to the pavement are not considered
Vehicle Dynamics Standards Committee
This document is a road test procedure for comparing the corrosion resistance of both coated and uncoated sheet steels in an undervehicle deicing salt environment
Materials, Processes and Parts Council
Items per page:
1 – 50 of 212678