Your Selections

SAE Student/Young Professional Technical Paper Competition
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Analysis of Accelerator Hardware for Autonomous Vehicles and Data Centers

Wayne State University-Kyle W. Brown
Published 2019-10-22 by SAE International in United States
The development of Autonomous Vehicles (AV) has become a popular subject in academia and industry. Companies and cities are quickly realizing the opportunities that AVs can generate from Mobility as a Service to traffic safety. The challenges for the infrastructure to incorporate AVs as a viable transportation source are immense, from an outdated infrastructure to radical Smart-City designs. Historically, the transportation infrastructure has faced challenges from underfunding, economics, and much needed improvements. With the current infrastructure unable to support many of the services required by a fully connected network, a transformation will be necessary to meet growing mobility needs. The role of accelerating technology in data centers are key for production operations among industry leaders such as Amazon and Microsoft for real-time processing. The same accelerating technology that has successfully impacted data centers will play the same role in much smaller micro data centers (mDC) for Smart-City design in the transportation infrastructure. These mDCs and Edge computing sites will be tasked with the latency, tasking caching and offloading (TCO), and processing of millions of connected…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Design and Fabrication of a Formula SAE Undertray

Colorado School of Mines-Jacob Thom, Bridger Armstrong, Robin Chow, Forrest Denham, Quinn Khosla, Luke La Rocque, John Oldland, Steven Ripple, Nicholas Sammons
Published 2019-10-22 by SAE International in United States
Aerodynamic packages can provide a significant performance benefit to Formula SAE cars, but design and development of a full aerodynamics package can be time-consuming and expensive. An undertray system can provide significant aerodynamic benefits at a lower cost than a full aerodynamics package with front and rear wings. To properly design and test an undertray, a robust program of computational fluid dynamics (CFD) analysis and verification is needed. CFD analysis can be challenging, especially for large external flow problems like that of a full car. Due to this difficulty, careful meshing and setup of simulations is necessary to ensure accurate results. Much like analysis, fabrication of an aerodynamics package for a Formula SAE car is difficult. Fiberglass and carbon fiber layup processes are commonly used, but are prone to a variety of issues, and can be costly and time-consuming. Therefore, a thorough layup schedule and a careful manufacturing process is necessary. Fiberglass and carbon fiber were chosen as materials for the undertray due to their low weight relative to strength. These materials are often difficult…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Next Generation HEV Powertrain Design Tools: Roadmap and Challenges

Politecnico di Torino-Pier Giuseppe Anselma, Giovanni Belingardi
Published 2019-10-22 by SAE International in United States
Hybrid electric vehicles (HEVs) represent a fundamental step in the global evolution towards transportation electrification. Nevertheless, they exhibit a remarkably complex design environment with respect to both traditional internal combustion engine vehicles and battery electric vehicles. Innovative and advanced design tools are therefore crucially required to effectively handle the increased complexity of HEV development processes. This paper aims at providing a comprehensive overview of past and current advancements in HEV powertrain design methodologies. Subsequently, major simplifications and limits of current HEV design methodologies are detailed. The final part of this paper defines research challenges that need accomplishment to develop the next generation HEV architecture design tools. These particularly include the application of multi-fidelity modeling approaches, the embedded design of powertrain architecture and on-board control logic and the endorsement of multi-disciplinary optimization procedures. Resolving these issues may indeed remarkably foster the widespread adoption of HEVs in the global vehicle market.
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Effect of Fuel Type and Tip Deposits on End of Injection Spray Characteristics of Gasoline Direct Injection Fuel Injectors

Ford Motor Co., Ltd.-Mark Meinhart
Michigan Technological University-Robert A. Schroeter, Jeffrey Naber, Seong-Young Lee
Published 2019-10-22 by SAE International in United States
There has been a great effort expended in identifying causes of Hydro-Carbon (HC) and Particulate Matter (PM) emissions resulting from poor spray preparation, leading to characterization of fueling behavior near nozzle. It has been observed that large droplet size is a primary contributor to HC and PM emission. Imaging technologies have been developed to understand the break-up and consistency of fuel spray. However, there appears to be a lack of studies of the spray characteristics at the End of Injection (EOI), near nozzle, in particular, the effect that tip deposits have on the EOI characteristics. Injector tip deposits are of interest due to their effect on not only fuel spray characteristics, but also their unintended effect on engine out emissions. Using a novel imaging technique to extract near nozzle fuel characteristics at EOI, the impact of tip deposits on Gasoline Direct Injection (GDI) fuel injectors at the EOI is being examined in this work. Additionally, the impact of the test fuel used will also be evaluated. This work will present the large influence of fuel…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Assessing the Combined Outcome of Rice Husk Nano Additive and Water Injection Method on the Performance, Emission and Combustion Characters of the Low Viscous Pine Oil in a Diesel Engine

Anna University Chennai-Mebin Samuel P, Devaradjane Gobalakichenin
University College of Engineering Villupuram-Gnanamoorthi V
Published 2019-10-22 by SAE International in United States
The research work intends to assess the need and improvement by using a low viscous bio oil, RH (rice husk) nano particles and water injection method in enhancing the performance, emission and combustion characters of a diesel engine. One of the major setbacks for using biodiesel is its higher viscosity. Hence, a low viscous oil (pine oil) which does not need transesterification process was used as a biofuel in this study. Further, to improve its characteristics a non-metallic nano additive produced from rice husk was added at 3 proportions (50, 100, 200 ppm) and the optimal quantity was found as 100 ppm based on the BTE (brake thermal efficiency) value of 30.2% at peak load condition. This efficiency value was accompanied by a considerable decrease in pollutants like HC (hydrocarbon)-34.8%, Smoke-31.6%, CO (carbon monoxide)-43.7%. On the contrary, NOx (oxides of nitrogen) emission was found to be increased for all load values. At peak load, when compared with diesel, pine oil with RH has 19.3% increased NOx emission. To reduce this increased NOx emission, water was…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Eco-Driving Strategies for Different Powertrain Types and Scenarios

Argonne National Laboratory-Simeon Iliev, Eric Rask, Kevin Stutenberg, Michael Duoba
Published 2019-10-22 by SAE International in United States
Connected automated vehicles (CAVs) are quickly becoming a reality, and their potential ability to communicate with each other and the infrastructure around them has big potential impacts on future mobility systems. Perhaps one of the most important impacts could be on network wide energy consumption. A lot of research has already been performed on the topic of eco-driving and the potential fuel and energy consumption benefits for CAVs. However, most of the efforts to date have been based on simulation studies only, and have only considered conventional vehicle powertrains. In this study, experimental data is presented for the potential eco-driving benefits of two specific intersection approach scenarios, for four different powertrain types.The two intersection approach scenarios considered in this study include an approach to a red light where coming to a complete stop is avoidable (short red light) and one where a complete stop is determined necessary (long red light) thanks to advance information from vehicle-to-infrastructure communication (V2I). The four powertrain types tested in this study include an advanced conventional vehicle, a conventional vehicle with…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

An IMPC Based Parking Assistance System

FinitronX-Qianyu Ouyang, Xianzhe Jia
Published 2019-10-22 by SAE International in United States
This paper summarizes progress and outcome from our research projects on IMPC-based parking management system, including parking motion planning and control strategy, as well as a searching strategy for parking spot. IMPC here refers to interactive model predictive control regime, which is characterized in that multiple agents implementing separate MPC strategy are incorporating information about their state, objective, and constraints. To predict future parking parameters, we proposed a practical framework which integrates anticipatory techniques with a model predictive approach that robustly models the stochastic parking environment. The framework is able to take into account the interactions between vehicle subsystems, and can optimize trajectory under complex traffic patterns in real-world scenarios. Adaptive model predictive control is utilized to optimally minimize a cost function regarding performance, energy efficiency and drivability with regard to surrounding vehicle states. Dynamic programming was used to solve the control objective under multiple constraints, which yielded superior performance in comparison with convex programming. An original navigation system was developed for leading user to the parking spot in case of forgetting exact location, which…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Topology Optimized Design Methodology to Suit Additive Manufacturing Process

Cyient, Ltd.-Sai Deepika Vemula, B.Suman Naidu, Bassetti Chandrasheker, Krishna Mylapalli, Prithviraj Mondal, Lasheer Shareef Md
Published 2019-10-22 by SAE International in United States
The selection of component material and design is an important topic in the manufacturing industry to produce sustainable and competitive products. The efficiency of the system is directly related to the weight of the components in that system. Topology optimization is an optimization method that employs mathematical tools to optimize material distribution in a part to be designed. It is the subfield of structural optimization process which is widely usable in the component development process. Conventional machining, which can be described as subtractive, imposes constraints on a design and can hence be described as a design driven by technology. Additive manufacturing (AM), on the other hand, can be described as technology driven by design. It is possible to manufacture any complex shape without technological constraints using AM. The cons aspect of additive manufacturing is its adaptability to mass production due to its repeatability. Realization of topology optimization through additive manufacturing provides full design freedom for design engineers. This paper discusses the application of topology optimization to parts designed for AM, highlighting the main practical difficulties…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Feasibility of Multiple Piston Motion Control Approaches in a Free Piston Engine Generator

West Virginia University-Mehar Bade, Nigel Clark, Parviz Famouri, PriyaankaDevi Guggilapu
Published 2019-10-22 by SAE International in United States
The control and design optimization of a Free Piston Engine Generator (FPEG) has been found to be difficult as each independent variable changes the piston dynamics with respect to time. These dynamics, in turn, alter the generator and engine response to other governing variables. As a result, the FPEG system requires an energy balance control algorithm such that the cumulative energy delivered by the engine is equal to the cumulative energy taken by the generator for stable operation. The main objective of this control algorithm is to match the power generated by the engine to the power demanded by the generator. In a conventional crankshaft engine, this energy balance control is similar to the use of a governor and a flywheel to control the rotational speed. In general, if the generator consumes more energy in a cycle than the engine provides, the system moves towards a stall. If the generator consumes less energy, then the effective stroke, compression ratio and maximum translator velocity must rise steadily from cycle-to-cycle until the heat transfer losses stop the…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Integrated Engine States Estimation Using Extended Kalman Filter and Disturbance Observer

Clemson University-Qilun Zhu, Robert Prucka
Published 2019-10-22 by SAE International in United States
Accurate estimation of engine state(s) is vital for engine control systems to achieve their designated objectives. The fusion of sensors can significantly improve the estimation results in terms of accuracy and precision. This paper investigates using an Extended Kalman Filter (EKF) to estimate engine state(s) for Spark Ignited (SI) engines with the external EGR system. The EKF combines air path sensors with cylinder pressure feedback through a control-oriented engine cycle domain model. The model integrates air path dynamics, torque generation, exhaust gas temperature, and residual gas mass. The EKF generates a cycle-based estimation of engine state(s) for model-based control algorithms, which is not the focus of this paper. The sensor and noise dynamics are analyzed and integrated into the EKF formulation. To account for ‘non-white’ disturbances including modeling errors and sensor/actuator offset, the EKF engine state(s) observer is augmented with disturbance state(s) estimation. Case studies demonstrate that the disturbance augmented EKF can identify the sources of estimation errors and mitigates these errors automatically within several engine cycles. This paper concludes that the number of disturbance…
This content contains downloadable datasets
Annotation ability available