Results
This SAE Standard provides test procedures, requirements, and guidelines for a parking lamp
Instructions on this chart are intended to be used as a ready reference by personnel responsible for servicing off-road self-propelled work machines described in SAE J1116, categories 1, 2, 3, and 4. Detailed maintenance and service guidelines are reserved for maintenance, operator, and lubrication manuals as defined in SAE J920
This SAE Standard establishes the test procedures, performance requirements, and criteria necessary to evaluate minimum safety and reliability requirements of a children’s snowmobile as identified in 1.2
This SAE Standard provides testing and functional requirements to meet specified minimum performance criteria for electronic probe-type leak detectors. The equipment specified here will identify smaller refrigerant leaks when servicing motor vehicle air conditioning systems, including those engineered with improved sealing and smaller refrigerant charges to address environmental concerns and increase system efficiency. This document does not address any safety issues concerning the equipment design or use beyond that of sampling a flammable refrigerant, save those described in 3.1 and 3.2 of this document. All requirements of this standard shall be verified in SAE J2911
This SAE Recommended Practice applies to off-road, self-propelled work machine categories of earthmoving, forestry, road building and maintenance, and specialized mining machinery as defined in SAE J1116
The information in this SAE Recommended Practice has been compiled by Technical Committee 1 (Engine Lubrication) of the SAE Fuels and Lubricants Division. The intent is to provide those concerned with the design and maintenance of two-stroke-cycle engines with a better understanding of the properties of two-stroke-cycle lubricants. Reference is also made to test procedures which may be used to measure the chemical and physical characteristics of these lubricants
This SAE Standard was prepared by Technical Committee 1, Engine Lubrication, of SAE Fuels and Lubricants Council. The intent is to improve communications among engine manufacturers, engine users, and lubricant marketers in describing lubricant performance characteristics. The key objective is to ensure that a correct lubricant is used in each two-stroke-cycle engine
This SAE Recommended Practice describes the basic content requirements, barcode specifications, and functional test specifications of the vehicle identification number (VIN) label. On the vehicle, the VIN label is to be mounted in a readily accessible location for use of a barcode scanning device
This SAE Recommended Practice establishes a procedure for the issuance and assignment of a World Manufacturer Identifier (WMI) on a uniform basis to vehicle manufacturers that may desire to incorporate it in their Vehicle Identification Numbers (VIN). This recommended practice is intended to be used in conjunction with the recommendations for VIN systems described in SAE J853, SAE J187, SAE J272, and other SAE reports for VIN systems. These procedures were developed to assist in identifying the vehicle as to its point of origin. It was felt that review and coordination of the WMI by a single organization would avoid duplication of manufacturer identifiers and assist in the identification of vehicles by agencies such as those concerned with motor vehicle titling and registration, law enforcement, and theft recovery
This SAE Standard applies to off-road self-propelled work machines as categorized in SAE J1116. Fast fill fueling typically applies to self-propelled machines with a fuel capacity over 380 L, although fast fill fueling can be used on machines with smaller fuel capacity
This document includes requirements of installations of adequate landing and taxiing lighting systems in aircraft of the following categories: a Single engine personal and/or liaison type b Light twin engine c Large multiengine propeller d Large multiengine turbojet/turbofan e Military high-performance fighter and attack f Helicopter This document will cover general requirements and recommended practices for all types of landing and taxi lights. More specific recommendations for LED lights in particular can be found in ARP6402
This specification covers a low-alloy steel in the form of bare welding wire. Type 2 - copper coated wire was removed from this document (see 8.5
This information report covers two distinct projects to formulate Jet Refrence Fluids (JRF) for testing of material compatibility. The first effort began in 1978 and focused on producing a formulation (JRF-2) that simulated JP-4 and included composition with metallic ions that reproduced chalking of fuel tank sealants. This effort resulted in the preparation of AMS2629 that defined the formulation of JRF-2 (Type 1) and the same formulation with metallic ions (Type 2). The second effort began in 2002 and focused on preparing a JRF that simulated Jet A, JP-5 and JP-8. This effort went through multiple iterations, but eventually resulted in a JRF-3 formulation composed of Jet A plus military additives spiked to 25% aromatic content and high levels of sulfur experienced in the global fuel supply. Since the metallic ions added to JRF-2 demonstrated their ability to simulate a chalking reaction, chalking was not tested with the ions added to JRF-3. AMS2629 was changed multiple times to
This document defines a set of standard application layer interfaces called JAUS HMI Services. JAUS Services provide the means for software entities in an unmanned system or system of unmanned systems to communicate and coordinate their activities. The HMI Services represent the platform-independent Human Machine Interface (HMI) capabilities commonly found across all domains and types of unmanned systems. Five services are defined in this document: Drawing Pointing Device Keyboard Digital Control Analog Control Each service is described by a JAUS Service Definition (JSD) which specifies the message set and protocol required for compliance. Each JSD is fully compliant with the JAUS Service Interface Definition Language (JSIDL) [AS5684
This ARP describes a gravimetric method for the determination of particulate contaminant in hydraulic fluids by the control filter technique. NOTE: With this method, detectable contamination levels down to 0.2 mg (7.0 × 10-6 ounces) per sample can be obtained with a standard deviation of ±0.1 mg (±3.5 × 10-6 ounces
This specification covers the performance requirements for a plug and receptacle. The connector inserts may contain multiple termini or multiple termini and electrical contacts. The connectors use removable termini, or removable termini and electrical contacts, and are capable of operating within a temperature range of −65 to +200 °C (see 1.2.1.1). These connectors are supplied under AS9100 reliability assurance program
This document recommends standard gland dimensions for static radial O-ring seal applications specifically for engine and engine control systems and provides recommendations for modifying these glands in special applications
This document specified the main dimensions and tolerances which affect interchangeability between end yoke earwork for the most common North American-used universal joints. Dimensions and tolerances of the mating universal joints are left to the discretion of the universal joint manufacturers. The term “earwork” refers to the configuration and geometry defining end yoke connections directly provided for universal joint cross attachment of drivelines. Earwork for certain styles of universal joint connections and flange connections have for a long time been proprietary to certain manufacturers. Over years of usage, proprietary rights have expired and the industry, as a whole, has used these earworks as standard. In an effort to tabulate some of the long-established practices, the following SAE Recommended Practice has been compiled. Manufacturers do from time to time, as the need arises, change tolerances or fits to better enhance component performance. This document has been prepared
This procedure is applicable to brake pad modes between 500 Hz and 16 kHz. The parameters measured with this procedure are defined as the first three natural frequencies, fn (n = 1, 2, 3), and the corresponding loss factors, η
This SAE Recommended Practice covers all carburetors and throttle bodies used on permanently installed gasoline marine engines
Items per page:
50
1 – 50 of 212614