The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

Zhao, Xiaowei
Show Only


File Formats

Content Types








   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Optimization of the Aerodynamic Lift and Drag of LYNK&CO 03+ with Simulation and Wind Tunnel Test

Dassault Systemes(Shanghai) Information Technology Co.-Weiliang Xie, Bo Li, Xiaowei Zhao
Geely Automobile Research Institute-Qian Feng, Biaoneng Luo, Huixiang Zhang, Hong Peng, Zhenying Zhu, Zhi Ding, Ling Zhu
  • Technical Paper
  • 2020-01-0672
To be published on 2020-04-14 by SAE International in United States
Based on the first sedan of the LYNK&CO brand from Geely, a high performance configuration with the additional aerodynamic package was developed. The aerodynamic package including the front wheel deflector, the front lip, the side skirt, the rear spoiler and the rear diffuser, were upgraded to generate enough aerodynamic downforce for better handing stability, without too much compromising of the aerodynamic drag of the vehicle to keep a low fuel consumption. Simulation approach with PowerFLOW, combined with the design space exploration method were used to optimize both of the aerodynamic lift and drag. Wind tunnel test was also used to firstly calibrate the simulation results and finally to validate the optimized design. The results turn out to be appropriate trade-off between the lift and the drag to meet the aerodynamics requirement, and a consistently good matching between the simulation and test.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Three-Dimensional Numerical Simulation of Flame Propagation in Spark Ignition Engines

University of Texas at Austin-Xiaowei Zhao, Ronald D. Matthews, Janet L. Ellzey
Published 1993-10-01 by SAE International in United States
Multi-dimensional numerical simulation of the combustion process in spark ignition engines were performed using the Coherent Flame Model (CFM) which is based on the flamelet assumption. The CFM uses a balance equation for the flame surface area to simulate flame surface advection, diffusion, production and destruction in a turbulent reacting flow. There are two model constants in CFM, one associated with the modeling of flame surface production and the other with the modeling of flame surface destruction. Previous experimental results on two test engines charged with propane-air mixtures were used to compare with the computations for different engine speeds, loads, equivalence ratios and spark plug locations. Predicted engine cylinder pressure histories agree well with the experimental results for various operating conditions after the model constants were calibrated against a reference operating condition. It was found that only the production term constant must be calibrated for each engine. However, when the ignition site is moved away from the center of the combustion chamber, predicted burning rates are too fast for the higher engine speed cases. Contour…
Annotation ability available