Search
Advanced Search
of the following are true
(
)

Results

Items (211,947)
The demonstrated architectural model and associated graphical techniques defined herein were developed to provide a simple method of visualizing the general functional operation or behavior of a Distributed Embedded System with a strong emphasis on representing system time characteristics.
Embedded Software Standards Committee
This SAE Recommended Practice establishes a uniform, powered vehicle test procedure and minimum performance requirement for lane departure warning systems used in highway trucks and buses greater than 4546 kg (10000 pounds) gross vehicle weight (GVW). Systems similar in function but different in scope and complexity, including lane keeping/lane assist and merge assist, are not included in this document. This document does not apply to trailers, dollies, etc. This document does not intend to exclude any particular system or sensor technology. This document will test the functionality of the lane departure warning system (LDWS) (e.g., ability to detect lane presence and ability to detect an unintended lane departure), its ability to indicate LDWS engagement, its ability to indicate LDWS disengagement, and its ability to determine the point at which the LDWS notifies the human machine interface (HMI) or vehicle control system that a lane departure event is detected. Moreover, this
Truck and Bus Automation Safety Committee
It is expected that Level 4 and 5 automated driving systems-dedicated vehicles (ADS-DVs) will eventually enable persons to travel at will who are otherwise unable to obtain a driver's license for a conventional vehicle, namely, persons with certain visual, cognitive, and/or physical impairments. This information report focuses on these disabilities, but also provides guidance for those with other disabilities. This report is limited to fleet operated on-demand shared mobility scenarios, as this is widely considered to be the first way people will be able to interact with ADS-DVs. To be more specific, this report does not address fixed route transit services or private vehicle ownership. Similarly, this report is focused on road-worthy vehicles; not scooters, golf carts, etc. Lastly, this report does not address the design of chair lifts, ramps, or securements for persons who use wheeled mobility devices (WHMD) (e.g., wheelchair, electric cart, etc.), as these matters are addressed by
On-Road Automated Driving (ORAD) Committee
This document is the Architecture Description (AD) for the SAE Unmanned Systems (UxS) Control Segment (UCS) Architecture Library Revision B or, simply, the UCS Architecture. The architecture is expressed by a library of publications as referenced herein. The other SAE publications in the UCS Architecture Library Revision B are AS6513B and AS6518B. The library also includes the government-owned Autonomous Ground Vehicle Reference Architecture (AGVRA) Data Model Framework Version 3.1A.
AS-4UCS Unmanned Systems Control Segment Architecture
This recommended practice is applicable to reciprocating engines powering unmanned aerial vehicles (UAV) having rated power values less than 22.4 kW, and which are not to be used for human transport.
null, null
This document provides a high-level ontology and lexicon for describing on-road ADS-operated vehicle behavioral competencies and driving maneuvers that comprise routine/normal performance of the complete DDT, as defined in SAE J3016. It provides definitions of behavior, maneuver, scenario, and scene. This initial high-level lexicon and ontology are developed for ADS driving behaviors, including considerations for hierarchy of behaviors, and relationships among maneuvers, operational design domain (ODD) elements, and object and event detection and response (OEDR). Considerations for describing scenarios using this lexicon and ontology are discussed. This document describes ADS-operated vehicle motion control maneuvers during routine/normal operation. Maneuvers of other road users are not evaluated. This document assumes left-hand drive vehicles and road infrastructure. Applicability to right-hand drive vehicles and roadway infrastructure would require adjustment to such vehicles and
On-Road Automated Driving (ORAD) Committee
Create and publish a list of terms relevant to electrified propulsion aircraft with summary text descriptions. The terms and descriptions will not provide full explanations, diagrams, and other detailed technical descriptions. These deeper descriptions will be addressed in other documents. This document defines the relevant terms and abbreviations related to the design, development, and use of electrified propulsion in aircraft. This definition is provided to enable a consistent use of technical language throughout the standards developed by the E-40 committee.
E-40 Electrified Propulsion Committee
This document reviews current aerospace software, hardware, and system development standards used in the certification/approval process of safety-critical airborne and ground-based systems, and assesses whether these standards are compatible with a typical Artificial Intelligence (AI) and Machine Learning (ML) development approach. The document then outlines what is required to produce a standard that provides the necessary accommodation to support integration of ML-enabled sub-systems into safety-critical airborne and ground-based systems, and details next steps in the production of such a standard.
G-34 Artificial Intelligence in Aviation
This document addresses the operational safety and human factors aspects of unauthorized laser illumination events in navigable airspace. The topics addressed include operational procedures, training, and protocols that flight crew members should follow in the event of a laser exposure. Of particular emphasis, this document outlines coping strategies for use during critical phases of flight. Although lasers are capable of causing retinal damage, most laser cockpit illuminations, to date, has been relatively low in irradiance causing primarily startle reactions, visual glare, flashblindness and afterimages. Permanent eye injuries from unauthorized laser exposures have been extremely rare. This document describes pilot operational procedures in response to the visual disruptions associated with low to moderate laser exposures that pilots are most likely to encounter during flight operations. With education and training, pilots can take actions that safeguard both their vision and the
G-10OL Operational Laser Committee
This report provides the process for developing a flexible test framework to support the creation of system-level cooperative driving automation (CDA) Feature test procedures, which are intended to be objective, repeatable, and transparent, and enable collaborative testing of the Feature. Utilizing a Feature’s functional and logical scenario details, it provides the building blocks necessary to develop cooperative automated driving system (C-ADS)-equipped vehicle (C-ADS-V) and CDA infrastructure (CDA-I) system diagrams, identify the interfaces to and from the systems, and identify the set of functional test support components specific to the CDA Feature. Utilizing these details, along with the Feature-specific concrete scenarios, a method for developing a test scope and system level use-case-focused test procedures is provided.
Cooperative Driving Automation(CDA) Committee
This SAE Recommended Practice establishes a test procedure for the evaluation of lane departure warning (LDW), lane keeping assistance (LKA), and lane centering assistance systems used in passenger vehicles and light trucks. This test procedure does not intend to exclude any particular system or sensing technology. The recommended practice can be used to test the functionality and performance of LDW, LKA, and lane centering assistance systems by assessing their ability to (1) warn (LDW) or control (LKA, lane centering assistance) in response to an unintended lane departure, and (2) the ability to indicate a system disengagement. The human machine interface (HMI) is not addressed herein but is considered in SAE J2808. The recommended practice specifies lane markers to enable lane departure testing, or road edges, to enable testing of road departure mitigation systems. The document is separated into two tiers. Tier One establishes a recommended minimum set of performance criteria for LDW
Active Safety Systems Standards Committee
This document provides an assessment of current engineering test and simulation standards and methods used to determine the fuel efficiency, freight efficiency and emissions of single-vehicle systems comprised primarily of on-road trucks and buses with GVWR of more than 10000 pounds (4535 kg). This document provides guidance on the applicability and use of each test and simulation standard, method and technology discussed for multi-vehicle systems.
Truck and Bus Automation Safety Committee
This document defines a set of standard application layer interfaces called JAUS Mission Spooling Services. JAUS Services provide the means for software entities in an unmanned system or system of unmanned systems to communicate and coordinate their activities. The Mission Spooling Services represent the physical platform-independent capabilities commonly found across all domains and types of unmanned systems. At present, one service is defined in this document (more services are planned for future versions of this document): Mission Spooler: Stores, manages, and executes lists of tasks The Mission Spooler service is described by a JAUS Service Definition (JSD) which specifies the message set and message protocol required for compliance. The JSD is fully compliant with the JAUS Service Interface Definition Language (JSIDL).
AS-4JAUS Joint Architecture for Unmanned Systems Committee
This SAE Standard describes standardized medium-independent messages needed by information service providers for Advanced Traveler Information Systems (ATIS). The messages contained herein address all stages of travel (informational, pre-trip and en route), all types of travelers (drivers, passengers, personal devices, computers, other servers), all categories of information, and all platforms for delivery of information (in-vehicle, portable devices, kiosks, etc.).
V2X Core Technical Committee
This document covers the recommended lighting performance and design criteria for: a Left Forward Navigation Position Lights (Red) b Right Forward Navigation Position Lights (Green) c Rear Navigation Position Lights (White) d Anticollision Lights (1) Red Flashing Lights Top and Bottom Fuselage (2) White Flashing Strobe Lights Wing Tips and/or Tail (3) Red Flashing Beacon Light on Top of Vertical Tail
A-20B Exterior Lighting Committee
This SAE Recommended Practice provides common data output formats and definitions for a variety of data elements that may be useful for analyzing the performance of automated driving system (ADS) during an event that meets the trigger threshold criteria specified in this document. The document is intended to govern data element definitions, to provide a minimum data element set, and to specify a common ADS data logger record format as applicable for motor vehicle applications. Automated driving systems (ADSs) perform the complete dynamic driving task (DDT) while engaged. In the absence of a human “driver,” the ADS itself could be the only witness of a collision event. As such, a definition of the ADS data recording is necessary in order to standardize information available to the accident reconstructionist. For this purpose, the data elements defined herein supplement the SAE J1698-1 defined EDR in order to facilitate the determination of the background and events leading up to a
Event Data Recorder Committee
This SAE Aerospace Information Report (AIR) provides information on the parking brake system design for a variety of aircraft including part 23, 25, 27, and 29. The document includes a discussion of key technical issues with parking brakes. This document does NOT provide recommended practices for parking brake system design.
A-5A Wheels, Brakes and Skid Controls Committee
This document provides preliminary1 safety-relevant guidance for in-vehicle fallback test driver training and for on-road testing of vehicles being operated by prototype conditional, high, and full (Levels 3 to 5) ADS, as defined by SAE J3016. It does not include guidance for evaluating the performance of post-production ADS-equipped vehicles. Moreover, this guidance only addresses testing of ADS-operated vehicles as overseen by in-vehicle fallback test drivers (IFTD). These guidelines do not address: Remote driving, including remote fallback test driving of prototype ADS-operated test vehicles in driverless operation. (Note: The term “remote fallback test driver” is included as a defined term herein and is intended to be addressed in a future iteration of this document. However, at this time, too little is published or known about this type of testing to provide even preliminary guidance.) Testing of driver support features (i.e., Levels 1 and 2), which rely on a human driver to
On-Road Automated Driving (ORAD) Committee
This Recommended Practice defines the technical requirements for a terrestrial-based PNT system to improve vehicle (e.g., unmanned, aerial, ground, maritime) positioning/navigation solutions and ensure critical infrastructure security, complementing GNSS technologies.
PNT Position, Navigation, and Timing
This document provides a list of data elements and event triggers for recording of event data relevant to crash investigations for heavy vehicles. The list of data elements includes recommended source(s) and formatting.
Truck and Bus Event Data Recorder Committee
This Information Report provides functional definitions and discussions of key terms and concepts for relating the experimental evaluation of driver distraction to real-world crash involvement. Examples of driver distraction and driving performance metrics include those related to vehicle control, object and event detection and response (OEDR), physiological indicators, subjective assessments, or combinations thereof. Examples of real-world crash involvement metrics include the epidemiological effect size measures of risk ratio, rate ratio, and odds ratio. The terms and concepts defined in this document are not intended to contribute to methodologies for assessing the individual metrics within a domain; these are covered in other SAE documents (e.g., SAE J2944) and SAE technical reports. For any measure chosen in one domain or the other, the goal is to give general definitions of key terms and concepts that relate metrics in one domain to those in the other. Issues of repeatability and
Driver Metrics, Performance, Behaviors and States Committee
This document describes an SAE Recommended Practice for Automatic Emergency Braking (AEB) system performance testing which: establishes uniform vehicle level test procedures identifies target equipment, test scenarios, and measurement methods identifies and explains the performance data of interest does not exclude any particular system or sensor technology identifies the known limitations of the information contained within (assumptions and “gaps”) is intended to be a guide toward standard practice and is subject to change on pace with the technology is limited to “Vehicle Front to Rear, In lane Scenarios” for initial release This document describes the equipment, facilities, methods and procedures needed to evaluate the ability of Automatic Emergency Braking (AEB) systems to detect and respond to another vehicle, in its immediate forward path, as it is approached from the rear. This document does not specify test conditions (e.g., speeds, decelerations, headways, etc.). Those values
Active Safety Systems Standards Committee
This specification applies to a communication protocol for networked control systems. The protocol provides peer-to-peer communication for networked control and is suitable for implementing both peer-to-peer and master-slave control strategies. This specification describes services for all seven protocol layers. In the layer 7 specification, it includes a description of the types of messages used by applications to exchange application and network management data.
AS-3 Fiber Optics and Applied Photonics Committee
This document establishes recommended practices for the specification of general performance, design, test, development, and quality assurance requirements for the flight control related functions of the Vehicle Management Systems (VMS) of military Unmanned Aircraft (UA), the airborne element of Unmanned Aircraft Systems (UAS), as defined by ASTM F 2395-07. The document is written for military unmanned aircraft intended for use primarily in military operational areas. The document also provides a foundation for considerations applicable to safe flight in all classes of airspace.
A-6A3 Flight Control and Vehicle Management Systems Cmt
The lane departure warning (LDW) system is a warning system that alerts drivers if they are drifting (or have drifted) out of their lane or from the roadway. This warning system is designed to reduce the likelihood of crashes resulting from unintentional lane departures (e.g., run-off-road, side collisions, etc.). This system will not take control of the vehicle; it will only let the driver know that he/she needs to steer back into the lane. An LDW is not a lane-change monitor, which addresses intentional lane changes, or a blind spot monitoring system, which warns of other vehicles in adjacent lanes. This informational report applies to original equipment manufacturer and aftermarket LDW systems for light-duty vehicles (gross vehicle weight rating of no more than 8500 pounds) on relatively straight roads with a radius of curvature of 500 m or more and under good weather conditions.
Advanced Driver Assistance Systems (ADAS) Committee
This SAE Information Report develops a concept of operations (ConOps) to evaluate a cooperative driving automation (CDA) Feature for occluded pedestrian collision avoidance using perception status sharing. It provides a test procedure to evaluate this CDA Feature, which is suitable for proof-of-concept testing in both virtual and test track settings.
Cooperative Driving Automation(CDA) Committee
This document provides a summary of the activities to-date of Task Force #1 - Research Foundations – of the SAE’s Driver Vehicle Interface (DVI) committee. More specifically, it establishes working definitions of key DVI concepts, as well as an extensive list of data sources relevant to DVI design and the larger topic of driver distraction.
Driver Vehicle Interface (DVI) Committee
This SAE Standard describes the concept of operation, use cases, and message flows to create a Sensor Sharing Service (SSS). This service enable RSUs and V2X1 vehicles to share information about their localized driving environment. This work defines message structure, V2X entity requirements, and information elements to describe detected objects to facilitate sensor sharing.
Advanced Applications Technical Committee
This document specifies the minimum recommendations for Blind Spot Monitoring System (BSMS) operational characteristics and elements of the user interface. A visual BSMS indicator is recommended. BSMS detects and conveys to the driver via a visual indicator the presence of a target (e.g., a vehicle), adjacent to the subject vehicle in the “traditional” Adjacent Blind Spot Zone (ABSZ). The BSMS is not intended to replace the need for interior and exterior rear-view mirrors or to reduce mirror size. BSMS is only intended as a supplement to these mirrors and will not take any automatic vehicle control action to prevent possible collisions. While the BSMS will assist drivers in detecting the presence of vehicles in their ABSZ, the absence of a visual indicator will not guarantee that the driver can safely make a lane change maneuver (e.g., vehicles may be approaching rapidly outside the ABSZ area). This document applies to original equipment and aftermarket BSMS systems for passenger
Advanced Driver Assistance Systems (ADAS) Committee
This SAE Standard provides requirements to support applications for the maneuver sharing and coordinating service (MSCS) beyond broadcast of basic safety messages (BSMs). This is to improve road safety and traffic efficiency by sharing and coordinating vehicle maneuvers via vehicle-to-everything (V2X) communications. This document lays out use case scenarios and defines vehicle-to-vehicle (V2V) application protocols, system requirements and message sets for MSCS. The defined message sets for MSCS will result in identifying new message types, data frames, and data elements for SAE J2735.
V2X Vehicular Applications Technical Committee
Adaptive cruise control (ACC) is an enhancement of conventional cruise control systems that allows the ACC-equipped vehicle to follow a forward vehicle at a pre-selected time gap, up to a driver selected speed, by controlling the engine, power train, and/or service brakes. This SAE Standard focuses on specifying the minimum requirements for ACC system operating characteristics and elements of the user interface. This document applies to original equipment and aftermarket ACC systems for passenger vehicles (including motorcycles). This document does not apply to heavy vehicles (GVWR > 10,000 lbs. or 4,536 kg). Furthermore, this document does not address other variations on ACC, such as “stop & go” ACC, that can bring the equipped vehicle to a stop and reaccelerate. Future revisions of this document should consider enhanced versions of ACC, as well as the integration of ACC with Forward Vehicle Collision Warning Systems (FVCWS).
Advanced Driver Assistance Systems (ADAS) Committee
This SAE Recommended Practice applies to both Original Equipment Manufacturer (OEM) and aftermarket ITS message-generating systems for passenger vehicles and heavy trucks. The recommended practice describes the method for prioritizing ITS in-vehicle messages and/or displayed information based on a defined set of criteria. Each criterion has a fixed number of levels that are used to rate/rank a given message or information item to determine its prioritization value. The prioritization value is used to determine the priority in which simultaneous, or overlapping, in-vehicle messages are presented to the driver.
Driver Vehicle Interface (DVI) Committee
Forward Collision Warning (FCW) systems are onboard systems intended to provide alerts to assist drivers in avoiding striking the rear end of another moving or stationary motorized vehicle. This SAE Information Report describes elements for a FCW operator interface, as well as requirements and test methods for systems capable of warning drivers of rear-end collisions. This information report applies to original equipment and aftermarket FCW systems for passenger vehicles including cars, light trucks, and vans. This report does not apply to heavy trucks. Furthermore, this document does not address integration issues associated with adaptive cruise control (ACC), and consequently, aspects of the document could be inappropriate for an ACC system integrated with a FCW system.
Advanced Driver Assistance Systems (ADAS) Committee
Scope is unavailable.
E-25 General Standards for Aerospace and Propulsion Systems
SCOPE IS UNAVAILABLE.
E-25 General Standards for Aerospace and Propulsion Systems
Items per page:
1 – 50 of 211947