The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

Yu, Kaijiang
Show Only


File Formats

Content Types








   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

The Design of Safe-Reliable-Optimal Performance for Automated Driving Systems on Multiple Lanes with Merging Features

Honda Motor Co., Ltd.-Kaijiang Yu
  • Technical Paper
  • 2020-01-0122
To be published on 2020-04-14 by SAE International in United States
Safety function for automated driving systems including advanced driver assistance systems and autonomous vehicle systems is very important. Inside safety function, predictive judge sub-function should be designed with the consideration of more and more penetration of automated driving vehicles. This paper presents the design on multiple lanes with merging features based on the author's previous Patent JP2019-147944 using predictive time-head-way and time-to-collision maps. In the author's previous work (Model Predictive Control for Hybrid Electric Vehicle Platooning Using Slope Information-Published on IEEE Transactions on Intelligent Transportation Systems), a model predictive control framework was designed. Due to the difficulty to detail the sub-safety function deeply with merging features, few works are found to deal with sensor platforms focusing on rear side, and situations of merging lane side with the consideration of relative relation variations with other vehicles and road border markers. However, performance enhancement is needed assuring 100% safety-reliability-optimality and single-objectivity. Also, platforms of on-board sensors including side and rear view are needed to deal with false negative operations and false positive operations. The optimal operation lineā€¦