Your Selections

Subramanian, Vijayasarathy
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

SELF EXPRESSIVE & SELF HEALING CLOSURES HARDWARES FOR AUTONOMOUS AND SHARED MOBILITY

General Motors Technical Center India-Vijayasarathy Subramanian, Biju Kumar, Masani Sivakrishna, Anandakumar Marappan
  • Technical Paper
  • 2019-28-2525
To be published on 2019-11-21 by SAE International in United States
Shared Mobility is changing the trends in Automotive Industry and its one of the Disruptions. The current vehicle customer usage and life of components are designed majorly for personal vehicle and with factors that comprehend usage of shared vehicles. The usage pattern for customer differ between personal vehicle, shared vehicle & Taxi. In the era of Autonomous and Shared mobility systems, the customer usage and expectation is high. The vehicle needs systems that will control customer interactions (Self-Expressive) & fix the issues on their own (Self-Healing). These two systems / methods will help in increasing customer satisfaction and life of the vehicle. We will be focusing on vehicle Closure hardware & mechanisms and look for opportunities to improve product life and customer experience in ride share and shared mobility vehicles by enabling integrated designs, which will Self-Express & Self-Heal. Vehicle closures having direct human interfaces with components like closures, handle & other hardware's will be tracked for their performance parameters and usage pattern. The performance parameters will be tracked for every customer and mapped to…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

THE NEED OF PERSONALIZATION AND OPPORTUNITIES IN AUTONOMOUS VEHICELS AND SHARED MOBILITY

General Motors Tech Center India-Suresh Dayakar, Vijayasarathy Subramanian, Keshava Reddy, Vijaykumar Shiramgond
  • Technical Paper
  • 2019-28-2520
To be published on 2019-11-21 by SAE International in United States
Shared mobility and Autonomous shared mobility take major share in Mobility 4.0. Personalization in a shared mobility will play a significant role in customer engagement in Autonomous world. In case of personal vehicle each customer will have their own personal settings in their own vehicle; in case of Autonomous shared mobility or shared mobility, we can satisfy individual customer need only by personalizing the vehicle for each individual user needs. This will give a cognitive feel of personal vehicle in a shared environment. We need technologies in improving vehicle interior and exterior systems and design to address personalization. We will be discussing on feasible opportunities of personalization and with illustrations in Vehicle Interior Cabin Space, Seat comfort, Compartments, Vehicle interior & Exterior Access / Controls. The summary will have design concept that will have personalization solutions satisfying each critical customer integration for all identified zones of vehicle exterior and interior. This approach of Design Thinking of identifying personalization need and enabling integrated design solution will help to improve customer satisfaction and engagement in Autonomous /…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Exhaust Volume Flow based Time Alignment in NOx Measurements in NOx Reduction Systems

Navistar Inc.-Vijayasarathy Subramanian, Navtej Singh, Adam Lack
Published 2012-09-24 by SAE International in United States
With the emission norms becoming more and more stringent along with the focus on reducing ownership and operating costs, the need to optimize the aftertreatment system becomes much more evident. Thus, the well monitored, optimized usage of urea or ammonia (NH₃) for the NOx reduction in an SCR system is critical to reduce the operating cost of the vehicles and to comply with emission regulations. In Ammonia Storage and Delivery System (ASDS), pure gaseous NH₃ from the NH₃ cartridges is being used for the reduction of the engine-out NOx in the exhaust stream over the NPF (NOx Particulate Filter). In almost all NOx reduction systems, NOx sensors play an important role in determining the amount of urea or NH₃ to be dosed for efficient NOx reduction with minimal NH₃ consumption and slippage for best possible fluid economy. In the NH₃ dosing strategy the NOx conversion efficiency plays a vital role as a feedback variable for calculating NH₃ dosing quantity and is based on the upstream and downstream NOx sensor measurements. Since the NOx sensors are…
Annotation ability available