Your Selections

Stuhldreher, Mark
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Benchmarking a 2018 Toyota Camry UB80E Eight-Speed Automatic Transmission

US Environmental Protection Agency-Andrew Moskalik, Mark Stuhldreher, John Kargul
  • Technical Paper
  • 2020-01-1286
To be published on 2020-04-14 by SAE International in United States
As part of the U.S. Environmental Protection Agency’s (EPA’s) continuing assessment of advanced light-duty automotive technologies in support of regulatory and compliance programs, a 2018 Toyota Camry front wheel drive eight-speed automatic transmission was benchmarked. The benchmarking data were used as inputs to EPA’s Advanced Light-duty Powertrain and Hybrid Analysis (ALPHA) vehicle simulation model to estimate GHG emissions from light-duty vehicles.ALPHA requires both detailed engine fuel consumption maps and transmission torque loss maps. EPA’s National Vehicle and Fuels Emissions Laboratory has developed a streamlined, cost-effective in-house method of transmission testing, capable of gathering a dataset sufficient to characterize transmissions within ALPHA. This testing methodology targets the range of transmission operation observed during vehicle testing over EPA’s city and highway drive cycles.With this method, the transmission is tested as a complete system, as opposed to disassembling the transmission components and testing each separately. This paper describes the benchmarking process used to gather transmission data and the test results obtained. A UB80E eight-speed automatic transmission from a 2018 Toyota Camry was installed in an engine dynamometer test…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Benchmarking a 2018 Toyota Camry 2.5-Liter Atkinson Cycle Engine with Cooled-EGR

SAE International Journal of Advances and Current Practices in Mobility

Southwest Research Institute-Josh Alden
US Environmental Protection Agency-John Kargul, Mark Stuhldreher, Daniel Barba, Charles Schenk, Stanislav Bohac, Joseph McDonald, Paul Dekraker
  • Journal Article
  • 2019-01-0249
Published 2019-04-02 by SAE International in United States
As part of the U.S. Environmental Protection Agency’s (EPA’s) continuing assessment of advanced light-duty automotive technologies in support of regulatory and compliance programs, a 2018 Toyota Camry A25A-FKS 4-cylinder, 2.5-liter, naturally aspirated, Atkinson Cycle engine with cooled exhaust gas recirculation (cEGR) was benchmarked. The engine was tested on an engine dynamometer with and without its 8-speed automatic transmission, and with the engine wiring harness tethered to a complete vehicle parked outside of the test cell. Engine and transmission torque, fuel flow, key engine temperatures and pressures, onboard diagnostics (OBD) data, and Controller Area Network (CAN) bus data were recorded. This paper documents the test results under idle, low, medium, and high load engine operation. Motoring torque, wide open throttle (WOT) torque and fuel consumption are measured during transient operation using both EPA Tier 2 and Tier 3 test fuels. The design and performance of this 2018 2.5-liter engine is described and compared to Toyota’s published data and to EPA’s previous projections of the efficiency of an Atkinson Cycle engine with cEGR. The Brake Thermal Efficiency…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Selective Interrupt and Control: An Open ECU Alternative

EPA Office of Mobile Sources-Mark Stuhldreher
Southwest Research Institute-Logan Smith, Ian Smith, Scott Hotz
Published 2018-04-03 by SAE International in United States
To enable the evaluation of off-calibration powertrain operation, a selective interrupt and control (SIC) test capability was developed as part of an EPA evaluation of a 1.6 L EcoBoost® engine. A control and data acquisition device sits between the stock powertrain controller and the engine; the device selectively passes through or modifies control signals while also simulating feedback signals. This paper describes the development process of SIC that enabled a test engineer to command off-calibration setpoints for intake and exhaust cam phasing as well as ignition timing without the need for an open ECU duplicating the stock calibration.Results are presented demonstrating the impact of ignition timing and cam phasing on engine efficiency. When coupled with combustion analysis and crank-domain data acquisition, this test configuration provides a complete picture of powertrain performance. Future applications of SIC could enable evaluating the impact of cam phasing on trapped residuals, examining knock tolerance, or studying the impact of splitting direct fuel injection into multiple pulses - all on a stock powertrain platform.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Predictive GT-Power Simulation for VNT Matching on a 1.6 L Turbocharged GDI Engine

Honeywell Transportation Systems-Aaron Birckett
Southwest Research Institute-Dennis Robertson, Graham Conway, Chris Chadwell
Published 2018-04-03 by SAE International in United States
The thermal efficiency benefits of low-pressure (LP) exhaust gas recirculation (EGR) in spark-ignition engine combustion are well known. One of the greatest barriers facing adoption of LP-EGR for high power-density applications is the challenge of boosting. Variable nozzle turbines (VNTs) have recently been developed for gasoline applications operating at high exhaust gas temperatures (EGTs). The use of a single VNT as a boost device may provide a lower-cost option compared to two-stage boosting systems or 48 V electronic boost devices for some LP-EGR applications. A predictive model was created based on engine testing results from a 1.6 L turbocharged gasoline direct injection (GDI) engine [1]. The model was tuned so that it predicted burn-rates and end-gas knock over an engine operating map with varying speeds, loads, EGR rates and fuel types. Using the model, an assessment of VNT performance was performed using compressor and turbine maps made available from Honeywell Transportation Systems. Results show that the single VNT device supports LP-EGR across the operating map while maintaining realistic full-load performance and maintaining or improving upon thermal efficiency…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Benchmarking a 2016 Honda Civic 1.5-Liter L15B7 Turbocharged Engine and Evaluating the Future Efficiency Potential of Turbocharged Engines

SAE International Journal of Engines

U.S. Environmental Protection Agency-Mark Stuhldreher, John Kargul, Daniel Barba, Joseph McDonald, Stanislav Bohac, Paul Dekraker, Andrew Moskalik
  • Journal Article
  • 2018-01-0319
Published 2018-04-03 by SAE International in United States
As part of the U.S. Environmental Protection Agency’s (EPA’s) continuing assessment of advanced light-duty (LD) automotive technologies to support the setting of appropriate national greenhouse gas (GHG) standards and to evaluate the impact of new technologies on in-use emissions, a 2016 Honda Civic with a 4-cylinder 1.5-liter L15B7 turbocharged engine and continuously variable transmission (CVT) was benchmarked. The test method involved installing the engine and its CVT in an engine-dynamometer test cell with the engine wiring harness tethered to its vehicle parked outside the test cell. Engine and transmission torque, fuel flow, key engine temperatures and pressures, and onboard diagnostics (OBD)/Controller Area Network (CAN) bus data were recorded.This article documents the test results for idle, low, medium, and high load engine operation, as well as motoring torque, wide-open throttle (WOT) torque, and fuel consumption during transient operation using both EPA Tier 2 and Tier 3 test fuels. Particular attention is given to characterizing enrichment control during high load engine operation. Results are used to create complete engine fuel consumption and efficiency maps and estimate CO2…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Evaluation of Emerging Technologies on a 1.6 L Turbocharged GDI Engine

Southwest Research Institute-Graham Conway, Dennis Robertson, Chris Chadwell
US Environmental Protection Agency-Joseph McDonald, John Kargul, Daniel Barba, Mark Stuhldreher
Published 2018-04-03 by SAE International in United States
Low-pressure loop exhaust gas recirculation (LP- EGR) combined with higher compression ratio, is a technology package that has been a focus of research to increase engine thermal efficiency of downsized, turbocharged gasoline direct injection (GDI) engines. Research shows that the addition of LP-EGR reduces the propensity to knock that is experienced at higher compression ratios [1]. To investigate the interaction and compatibility between increased compression ratio and LP-EGR, a 1.6 L Turbocharged GDI engine was modified to run with LP-EGR at a higher compression ratio (12:1 versus 10.5:1) via a piston change. This paper presents the results of the baseline testing on an engine run with a prototype controller and initially tuned to mimic an original equipment manufacturer (OEM) baseline control strategy running on premium fuel (92.8 anti-knock index). This paper then presents test results after first adding LP-EGR to the baseline engine, and then also increasing the compression ratio (CR) using 12:1 pistons. As a last step, the 10.5 CR engine with LP-EGR was run on regular fuel (87.7 anti-knock index) to verify that…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Testing and Benchmarking a 2014 GM Silverado 6L80 Six Speed Automatic Transmission

EPA Office of Mobile Sources-Mark Stuhldreher
US Environmental Protection Agency-John Kargul, Andrew Moskalik, Daniel Barba
Published 2017-11-17 by SAE International in United States
As part of its midterm evaluation of the 2022-2025 light-duty greenhouse gas (GHG) standards, the Environmental Protection Agency (EPA) has been acquiring fuel efficiency data from testing of recent engines and vehicles. The benchmarking data are used as inputs to EPA’s Advanced Light Duty Powertrain and Hybrid Analysis (ALPHA) vehicle simulation model created to estimate GHG emissions from light-duty vehicles.For complete powertrain modeling, ALPHA needs both detailed engine fuel consumption maps and transmission efficiency maps. EPA’s National Vehicle and Fuels Emissions Laboratory has previously relied on contractors to provide full characterization of transmission efficiency maps. To add to its benchmarking resources, EPA developed a streamlined more cost-effective in-house method of transmission testing, capable of gathering a dataset sufficient to broadly characterize transmissions within ALPHA. This technique targets the range of transmission operation observed during vehicle testing over the EPA city and highway drive cycles.This paper describes the method and test results of the benchmarking process used to gather transmission data. With this method, the transmission is tested as a complete system, as opposed to disassembling…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Characterizing Factors Influencing SI Engine Transient Fuel Consumption for Vehicle Simulation in ALPHA

SAE International Journal of Engines

US Environmental Protection Agency-Paul Dekraker, Mark Stuhldreher
University of Michigan-Youngki Kim
  • Journal Article
  • 2017-01-0533
Published 2017-03-28 by SAE International in United States
The U.S. Environmental Protection Agency’s (EPA’s) Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created to estimate greenhouse gas (GHG) emissions from light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types with different powertrain technologies, showing realistic vehicle behavior, and auditing of all energy flows in the model. In preparation for the midterm evaluation (MTE) of the 2017-2025 light-duty GHG emissions rule, ALPHA has been refined and revalidated using newly acquired data from model year 2013-2016 engines and vehicles.The robustness of EPA’s vehicle and engine testing for the MTE coupled with further validation of the ALPHA model has highlighted some areas where additional data can be used to add fidelity to the engine model within ALPHA. A simple model based only on a steady-state fuel map will yield fuel consumption and GHG emissions lower than what is measured during a chassis dynamometer test due to a variety of factors present during transient operation.This paper examines a) typical transient engine operation encountered over the EPA city and…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Fuel Efficiency Mapping of a 2014 6-Cylinder GM EcoTec 4.3L Engine with Cylinder Deactivation

EPA Office of Mobile Sources-Mark Stuhldreher
Published 2016-04-05 by SAE International in United States
As part of the midterm evaluation of the 2022-2025 light-duty GHG emissions rule, the Environmental Protection Agency (EPA) has been evaluating fuel efficiency data from tests on newer model engines and vehicles. The data is used as inputs to an EPA vehicle simulation model created to estimate greenhouse gas (GHG) emissions from light-duty vehicles. The Advanced Light Duty Powertrain and Hybrid Analysis (ALPHA) model is a physics-based, full vehicle computer simulation capable of analyzing various vehicle types with different powertrain technologies and showing realistic vehicle behavior and auditing of all internal energy flows in the model.Under the new light-duty fuel economy standards vehicle powertrains must become significantly more efficient. Cylinder deactivation engine technology is capable of deactivating one or more of its combustion cylinders when not needed to meet power demand. In order to understand and measure the efficiency effects of this technology, the EPA benchmarked a 2014 Chevrolet Silverado with a 6-cylinder 4.3L LV3® engine, capable of lowering its displacement from six to four cylinders.EPA’s complete benchmarking study of this vehicle included both chassis…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Downsized Boosted Engine Benchmarking and Results

US Environmental Protection Agency-Mark Stuhldreher, Charles Schenk, Jessica Brakora, David Hawkins, Andrew Moskalik, Paul DeKraker
Published 2015-04-14 by SAE International in United States
Light-duty vehicle greenhouse gas (GHG) and fuel economy (FE) standards for MYs 2012-2025 are requiring vehicle powertrains to become much more efficient. One key technology strategy that vehicle manufacturers are using to help comply with GHG and FE standards is to replace naturally aspirated engines with smaller displacement “downsized” boosted engines. In order to understand and measure the effects of this technology, the Environmental Protection Agency (EPA) benchmarked a 2013 Ford Escape with an EcoBoost® 1.6L engine.This paper describes a “tethered” engine dyno benchmarking method used to develop a fuel efficiency map for the 1.6L EcoBoost® engine. The engine was mounted in a dyno test cell and tethered with a lengthened engine wire harness to a complete 2013 Ford Escape vehicle outside the test cell. This method allowed engine mapping with the stock ECU and calibrations. Data collected included torque, fuel flow, emissions, temperatures, pressures, in-cylinder pressure, and OBD/epid can data.
Annotation ability available