Search
Advanced Search
of the following are true
(
)

Results

Items (212,812)
This SAE Aerospace Standard (AS) defines contamination classes and levels for particulate contamination of hydraulic fluids and includes methods of reporting related data (Appendix A
A-6C1 Fluids and Contamination Control Committee
The purpose of this document is to provide the user with the procedures needed to properly assemble and disassemble the 50th percentile male Hybrid III dummy, certify its components and verify its mass and dimensions. Also within this manual are guidelines for handling accelerometers, repairing flesh and setting joints
Dummy Testing and Equipment Committee
E-25 General Standards for Aerospace and Propulsion Systems
This standard defines requirements for the preparation and execution of the audit process. In addition, it defines the content and composition for the audit reporting of conformity and process effectiveness to the 9100-series standards, the organization's QMS documentation, and customer and statutory/regulatory requirements. The requirements in this standard are additions or represent changes to the requirements and guidelines in the standards for conformity assessment, auditing, and certification as published by ISO/IEC (i.e., ISO/IEC 17000, ISO/IEC 17021-1). When there is conflict with these standards, the requirements of the 9101 standard shall take precedence
G-14 Americas Aerospace Quality Standards Committee (AAQSC)
This specification covers polyurethane (PUR) in the form of two-component sealing compounds
AMS G9 Aerospace Sealing Committee
This specification covers an aircraft-quality, low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock
AMS E Carbon and Low Alloy Steels Committee
This specification covers an aluminum alloy in the form of alclad sheet and plate 0.020 to 0.500 inch (0.508 to 12.70 mm), inclusive, in thickness, supplied in the -T361 temper (see 8.5
AMS D Nonferrous Alloys Committee
This specification covers a titanium alloy in the form of sheet and strip up to and including 0.125 inch (3.18 mm) in nominal thickness
AMS G Titanium and Refractory Metals Committee
This SAE Aerospace Recommended Practice (ARP) describes a method to measure, track, and characterize the history of powder feedstock when consumed in the production of parts via additive manufacturing (AM). The history captured as part of this ARP includes AM process exposure, feedstock consumption, blending, and losses associated with the totality of the AM workflow. This document also outlines a two-part metric schema for used powder feedstock consequential of its process exposure history. This metric schema also enables aligning risk determination and usage practices for used powder when based on a correlation between tabulated values in the scheme and user-identified metrics. These correlated metrics with schema values may also be used when establishing powder blending workflows or identifying end-of-life for feedstock
AMS AM Additive Manufacturing Metals
This specification covers a titanium alloy in the form of preforms and parts produced by electron beam-powder bed fusion (EB-PBF) that are subjected to post-deposition hot isostatic press (HIP). Preforms may require subsequent machining or surface finishing to meet requirements for their intended final part application
AMS AM Additive Manufacturing Metals
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This specification covers two types of electrically conductive, elastomeric polythioether sealing compounds that cure at room temperature. The sealing compound is supplied as either a two-component system or as premixed and frozen
AMS G9 Aerospace Sealing Committee
With many corporations and suppliers conducting development and validation tests at different climatic wind tunnel sites, there is an increasing need for a recommended best practice that defines a process by which climatic wind tunnels can be correlated. This document addresses the test methods and metrics used to correlate results from different facilities, independent of location, for heating ventilation and air conditioning (HVAC) and powertrain cooling (PTC) development. This document should be used as a guideline to make sure key aspects of tunnel testing are covered when comparing various climatic wind tunnel facilities. The depth of the correlation program is ultimately influenced by program objectives; therefore, a correlation program, for the intent and purposes of this document, can range from just a few tests to a full analysis that involves multiple vehicle tests identifying limitations and statistical boundaries. Using recommendations in this document will eliminate most
Interior Climate Control Vehicle OEM Committee
This specification covers a special aircraft-quality, low-alloy steel in the form of bars
AMS E Carbon and Low Alloy Steels Committee
This specification covers an aircraft-quality, low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock
AMS E Carbon and Low Alloy Steels Committee
This specification covers a corrosion- and heat-resistant steel in the form of bars, forgings, flash welded rings, and stock for forging or flash welded rings
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel in the form of bars, wire, forgings, mechanical tubing, flash welded rings, and stock for forging or flash welded rings
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a low-alloy steel in the form of wire supplied as coils, spools, and straight lengths
AMS E Carbon and Low Alloy Steels Committee
This SAE Aerospace Standard (AS) provides a harmonized process and documentation requirements for the establishment of CoCs used to attest the conformity of aviation, space, and defense products (e.g., assemblies, sub-assemblies, equipment and systems, parts, material, software) or services. It includes a CoC template and supporting instructions on how to complete it. When quoted by the customer in a contractual requirement, application of this document is mandatory. In other cases, its use is recommended, but if there is a conflict between the requirements of this standard and customer or applicable statutory/regulatory requirements, the latter shall take precedence. Requirements for the establishment of Authorized Release Certificates (ARCs)—e.g., European Union Aviation Safety Agency (EASA) Form 1, Federal Aviation Administration (FAA) 8130-3 tag, Civil Aviation Administration of China (CAAC) Form 038—by an external provider holding a production approval (for new aviation products
G-14 Americas Aerospace Quality Standards Committee (AAQSC)
The intent of this SAE Aerospace Information Report (AIR) is to summarize and review the E34 committee’s efforts to educate the aerospace propulsion lubrication community on the science of micropitting, its consequences, and the various tribology evaluation methods that can be employed under aviation related conditions to differentiate formulation related aggravating factors
E-34 Propulsion Lubricants Committee
This SAE Aerospace Information Report (AIR) includes general design information on materials, procurement specifications, and mechanical properties for bolts and screws developed for use on aerospace propulsion systems. Both inch and metric (SI) designs are included
E-25 General Standards for Aerospace and Propulsion Systems
This specification covers an aircraft-quality, low-alloy steel in the form of mechanical tubing
AMS E Carbon and Low Alloy Steels Committee
This specification covers a titanium alloy in the form of bars and rods 1.00 inch (25.4 mm) and under in nominal diameter
AMS G Titanium and Refractory Metals Committee
This specification covers a premium aircraft-quality, low-alloy steel in the form of sheet, strip, and plate
AMS E Carbon and Low Alloy Steels Committee
This test method specifies the operating conditions for a fluorescent ultraviolet (UV) and condensation apparatus used for the accelerated exposure of various automotive exterior components
Textile and Flexible Plastics Committee
This SAE Recommended Practice incorporates dynamometer test procedures that produce riding range estimates for electric motorcycles during stop-and-go urban riding on surface streets and commuting trips in urban areas that include operation on freeways. This is typically done using a “coastdown” approach by disengaging the engine and assuming all losses are aerodynamic. However, with inherent losses in an electric motor, and no way to fully disengage the motor, another approach is to use a “on-road, constant speed” (Appendix B) method for fully electric vehicles to develop dynamometer coefficients
Motorcycle Technical Steering Committee
This procedure establishes a recommended practice for establishing the sensitivity of the chest displacement potentiometer assembly used in the Hybrid III family of Anthropomorphic Test Devices (ATDs, or crash dummies). This potentiometer assembly is used in the Hybrid III family to measure the linear displacement of the sternum relative to the spine (referred to as chest compression). An inherent nonlinearity exists in this measurement because a rotary potentiometer is being used to measure a generally linear displacement. As the chest cavity is compressed the potentiometer rotates, however the relationship between the compression and the potentiometer rotation (and voltage output) is nonlinear. Crash testing facilities have in the past used a variety of techniques to calibrate the chest potentiometer, that is to establish a sensitivity value (mm/(volt/volt) or mm/(mvolt/volt)). These sensitivity values are used to convert recorded voltage measurements to engineering units, in this
Dummy Testing and Equipment Committee
This specification covers the requirements for electrodeposited cadmium plating
AMS B Finishes Processes and Fluids Committee
This standard is primarily intended to apply to new parts and products intended to be produced in an on-going production phase, but can also be applied to parts currently in production (e.g., manufacturing, maintenance). The standard is applicable to all production processes that influence the variation of KCs, as well as maintenance and service processes in which KCs are identified. It applies to organizations for assemblies and all levels of parts within an assembly, down to the basic materials including castings and forgings, and to organizations that are responsible for producing the design characteristics of the product. The variation control process begins with product definition, typically stated in the design documentation (e.g., digital model, engineering drawing, specification) which identifies KCs, and leads to a variation management process for those KCs. This process may also be used for producer-identified KCs (e.g., process KCs, additional/substitute product KCs
G-14 Americas Aerospace Quality Standards Committee (AAQSC)
This specification establishes the requirements for computer-monitored shot peening of part surfaces by impingement of media, including metallic, glass, or ceramic shot. Computer-monitored peening is intended to provide a method of process observation, traceability, and response for all process input settings, in real time, during the entire peening process to ensure with objective evidence, the desired process outputs. AMS2430 forms an integral part of this specification
AMS B Finishes Processes and Fluids Committee
This SAE Standard covers general requirements and terminal interface dimensions of various sizes of pin and receptacle type terminals
Connector Systems Standards Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars 3.00 inches (76.2 mm) and under in nominal diameter, thickness or for hexagons least distance between parallel sides, forgings, flash welded rings 3.00 inches (76.2 mm) and under in nominal radial thickness, and stock of any size for forging, flash welded rings, or heading (see 8.5
AMS F Corrosion and Heat Resistant Alloys Committee
Items per page:
1 – 50 of 212812