Search
Advanced Search
of the following are true
(
)

Results

Items (212,022)
SAE J1979/ISO 15031-5 set includes the communication between the vehicle’s OBD systems and test equipment implemented across vehicles within the scope of the legislated emissions-related OBD. To achieve this, it is based on the Open Systems Interconnection (OSI) Basic Reference Model in accordance with ISO/IEC 7498-1 and ISO/IEC 10731, which structures communication systems into seven layers. When mapped on this model, the services specified are broken into: — Diagnostic services (layer 7), specified in: — ISO 15031-5/SAE J1979 (emissions-related OBD), — ISO 27145-3 (WWH-OBD), — Presentation layer (layer 6), specified in: — ISO 15031-2, SAE J1930-DA, — ISO 15031-5, SAE J1979-DA, — ISO 15031-6, SAE J2012-DA, — ISO 27145-2, SAE J2012-DA, — Session layer services (layer 5), specified in: — ISO 14229-2 supports ISO 15765-4 DoCAN and ISO 14230-4 DoK-Line protocols, — ISO 14229-2 is not applicable to the SAE J1850 and ISO 9141-2 protocols, — Transport layer services (layer 4), specified in
Vehicle E E System Diagnostic Standards Committee
This SAE Recommended Practice covers power transfer units (PTUs) used in passenger car and sport utility vehicles to support all wheel drive (AWD) operation. PTUs are typically full-time use geared devices (see 3.1). Some PTUs have additional features such as part-time on-demand capability via electronically actuated disconnect features, and other configurations are possible.
Drivetrain Standards Committee
This SAE Recommended Practice describes the test procedures for conducting side impact occupant restraint and equipment mounting integrity tests for ambulance patient compartment applications. Its purpose is to describe crash pulse characteristics and establish recommended test procedures that will standardize restraint system and equipment mounting testing for ambulances. Descriptions of the test set-up, test instrumentation, photographic/video coverage, and the test fixtures are included.
Truck Crashworthiness Committee
This SAE Recommended Practice describes the test procedures for conducting rear impact occupant restraint and equipment mounting integrity tests for ambulance patient compartment applications. Its purpose is to describe crash pulse characteristics and establish recommended test procedures that will standardize restraint system and equipment mount testing for ambulances. Descriptions of the test set-up, test instrumentation, photographic/video coverage, and the test fixtures are included.
Truck Crashworthiness Committee
This document specifically pertains to cybersecurity for road vehicles. This document encompasses the entire vehicle lifecycle of key management. It has been developed by SAE Committee TEVEES18F, Vehicle Security Credentials Interoperability (VSCI), a subcommittee of SAE Committee TEVEES18A, Vehicle Cybersecurity Systems Engineering Committee. This committee is authorized under the scope and authority fo the SAE Electronic Design Automation Steering Committee (also known as the Electronic Systems Group) that is directly under the scope and authority fo the SAE Motor Vehicle Council. The SAE Motor Vehicle Council’s stated scope of influence and authority, as defined by the SAE includes, passenger car and light truck in conjunction with ISO/SAE 21434.
Vehicle Electrical System Security Committee
This recommended practice shall apply to all on-highway trucks and truck-tractors equipped with air brake systems and having a GVW rating of 26 000 lb or more.
Truck and Bus Human Factors Committee
This SAE Recommended Practice describes two-dimensional, 95th percentile truck driver, side view, seated shin-knee contours for both the accelerator operating leg and the clutch operating leg for horizontally adjustable seats (see Figure 1). There is one contour for the clutch shin-knee and one contour for the accelerator shin-knee. There are three locating equations for each curve to accommodate male-to-female ratios of 50:50, 75:25, and 90:10 to 95:5.
Truck and Bus Human Factors Committee
SAE J1979/ISO 15031-5 set includes the communication between the vehicle’s OBD systems and test equipment implemented across vehicles within the scope of the legislated emissions-related OBD. To achieve this, it is based on the Open Systems Interconnection (OSI) Basic Reference Model in accordance with ISO/IEC 7498-1 and ISO/IEC 10731, which structures communication systems into seven layers. When mapped on this model, the services specified are broken into: — Diagnostic services (layer 7), specified in: — ISO 15031-5/SAE J1979 (emissions-related OBD), — ISO 27145-3 (WWH-OBD), — Presentation layer (layer 6), specified in: — ISO 15031-2, SAE J1930-DA, — ISO 15031-5, SAE J1979-DA, — ISO 15031-6, SAE J2012-DA, — ISO 27145-2, SAE J2012-DA, — Session layer services (layer 5), specified in: — ISO 14229-2 supports ISO 15765-4 DoCAN and ISO 14230-4 DoK-Line protocols, — ISO 14229-2 is not applicable to the SAE J1850 and ISO 9141-2 protocols, — Transport layer services (layer 4), specified in
Vehicle E E System Diagnostic Standards Committee
AS7928 includes insulated and uninsulated crimp-style copper lug terminals and conductor splices for stranded conductors.
AE-8C2 Terminating Devices and Tooling Committee
This SAE Standard defines the method for deriving and verifying the peening intensity exerted onto a part surface during shot peening or other surface enhancement processes.
Surface Enhancement Committee
This SAE Aerospace Standard (AS) specifies requirements for the interface between a rotational system indexing sensor and its interface electronics. These sensors generate one or more electrical pulses for each revolution of the shaft being monitored. These pulses can be used to determine the actual shaft rotational speed and/or position for use in a Health and Usage Monitoring System (HUMS). Indexing sensors are used in the following HUMS areas on the aircraft: (a) rotor track and balance, (b) engine vibration monitoring and diagnostics, (c) drive train vibration monitoring and diagnostics. The goal of this standardization effort is to be able to take any compliant indexing sensor and connect it to any compliant interface electronics. These SAE HUMS Interface Specifications include the minimal interface and performance requirements for interoperability with the Rotorcraft Industry Technology Association (RITA) compliant HUMS. Compliance with these Interface Specifications can be
HM-1R Rotorcraft Integrated Vehicle Health Management
This document establishes the Rotorcraft Industry Technology Association (RITA) Health and Usage Monitoring System Data Interchange Specification. The RITA HUMS Data Interchange Specification will provide information exchange within a rotorcraft HUMS and between a rotorcraft HUMS and external entities.
HM-1R Rotorcraft Integrated Vehicle Health Management
This SAE Standard covers reinforced rubber, reinforced thermoplastic, or otherwise constructed hose, or hose assemblies, intended for conducting liquid and gaseous refrigerants for service connections from mobile air conditioning systems to service equipment such as a manifold gauge set and vacuum pumps or for use internally, in charging stations or service equipment intended for use in servicing mobile air-conditioning systems.
Interior Climate Control Service Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, forgings, flash-welded rings, and stock for forging or flash-welded rings.
AMS F Corrosion and Heat Resistant Alloys Committee
This Aerospace Recommended Practice (ARP) defines acceptable methods for determining the seat reference point (SRP), and the documentation requirements for that determination, for passenger and crew seats in Transport Aircraft, Civil Rotorcraft, and General Aviation Aircraft.
Aircraft Seat Committee
This procedure provides methods to determine the appropriate inertia values for all passenger cars and light trucks up to 4540 kg of GVWR. For the same vehicle application and axle (front or rear), different tests sections or brake applications may use different inertia values to reflect the duty-cycle and loading conditions indicated on the specific test.
Brake Dynamometer Standards Committee
SAE J2886 Design Review Based on Failure Modes (DRBFM) Recommended Practice is intended for Automotive and Non-Automotive applications. It describes the basic principles and processes of DRBFM including planning, preparation, change point FMEA, design reviews, decisions based on actions completed, and feedback loops to other processes, such as design, validation and process guidelines (Appendix B - DRBFM Process Map). The intent of each fundamental step of the DRBFM methodology is presented. It is intended for use by organizations whose product development processes currently (or intend to) use Failure Mode & Effects Analysis (FMEA) or DRBFM as a tool for assessing the potential risk and reliability of system elements (product or process) or as part of their product improvement processes. DRBFM is not intended to replace FMEA however, companies interested in adopting DRBFM will benefit from the focus on specific change points and supporting engineering decisions based on detailed
Automotive Quality and Process Improvement Committee
This SAE Standard was developed to provide a method for indicating the direction of engine rotation and numbering of engine cylinders. The document is intended for use in designing new engines to eliminate the differences which presently exist in industry.
Engine Power Test Code Committee
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This procedure establishes a recommended practice for performing a Low Speed Knee Slider test to the Hybrid III 50th Male Anthropomorphic Test Device (ATD or crash dummy). This test was created to satisfy the demand from industry to have a certification test which produces similar results to an actual low energy automotive impact test. An inherent problem exists with the current certification procedure because the normal (2.75 m/s) knee slider test has test corridors that do not represent typical displacements seen in these low energy impact tests. The normal test corridors specify a force requirement at 10 mm and at 18 mm, while the low speed test needs to have a peak displacement around 10 mm.
Dummy Testing and Equipment Committee
Blade trackers measure: (a) rotor blade height and (b) lead-lag for use in a Rotor Track and Balance (RT&B) function in a Health and Usage Monitoring System (HUMS). HUMS is a generic term for a system used to measure, monitor, process, and store information relating to the functioning and usage of an aircraft's on-board primary systems, including the engine(s).
HM-1R Rotorcraft Integrated Vehicle Health Management
Accelerometers are transducers, or sensors, that convert acceleration into an electrical signal that can be used for airframe, drive, and propulsion system vibration monitoring and analysis within vehicle health and usage monitoring systems. This document defines interface requirements for accelerometers and associated interfacing electronics for use in a helicopter Health and Usage Monitoring System (HUMS). The purpose is to standardize the accelerometer-to-electronics interface with the intent of increasing interchangeability among HUMS sensors/systems and reducing the cost of HUMS accelerometers. Although this interface was specified with an internally amplified piezoelectric accelerometer in mind for Airframe and Drive Train accelerometers, this does not preclude the use of piezoelectric accelerometer with remote charge amplifier or any other sensor technology that meets the requirements given in this specification. This SAE HUMS Accelerometer Interface Specification includes the
HM-1R Rotorcraft Integrated Vehicle Health Management
This user’s manual covers the small adult female Hybrid III test dummy. It is intended for technicians who work with this device. It covers the construction and clothing, disassembly and reassembly, available instrumentation, external dimensions and segment masses, as well as certification and inspection test procedures. It includes instructions for safe handling of the instrumented dummy, repairing dummy flesh, and adjusting the joints throughout the dummy.
Dummy Testing and Equipment Committee
This procedure establishes a recommended practice for performing a lumbar flexion test to the Hybrid III 50th male anthropomorphic test device (ATD or crash dummy). This test was created to satisfy the demand from industry to have a certification test which characterizes the lumbar without interaction of other dummy components. In the past, there have not been any tests to evaluate the performance of Hybrid III 50th lumbar.
Dummy Testing and Equipment Committee
This SAE Recommended Practice establishes for passenger cars, light trucks, and multipurpose vehicles with GVW of 4500 kg (10 000 lb) or less: a Minimum performance standards for the windshield washer system. b Test procedures that can be conducted on uniform test equipment by commercially available laboratory facilities. c Uniform terminology of windshield washer system characteristics and phenomena consistent with those found in guides for the use of engineering layout studies to evaluate system performance. d Guides for the design and location of components of the systems for function, servicing of the system, etc. The minimum performance requirements and test procedures, outlined in this document, are based on currently available engineering data. It is intended that all portions of the document will be periodically reviewed and revised as additional data on windshield washer system performance are developed.
Wiper Standards Committee
This classification system tabulates the properties of vulcanized rubber materials (natural rubber, reclaimed rubber, synthetic rubbers, alone or in combination) that are intended for, but not limited to, use in rubber products for automotive applications.
Committee on Automotive Rubber Specs
This SAE Standard provides a system for specifying significant material properties of thermoplastic elastomers (TPEs) that are intended for, but not limited to, use in automotive applications. In all cases where provisions of this classification system would conflict with those of the detailed specifications for a particular product, the latter shall take precedence. This classification is based on SI units.
Committee on Automotive Rubber Specs
Items per page:
1 – 50 of 212022