Search
Advanced Search
of the following are true
(
)

Results

Items (211,951)
This document provides a description of a process for development of fly-by-wire actuation systems. Included are (1) the development of requirements for the servo-actuator hardware and the electronics hardware and software, (2) actuator and servo-electronics interface definitions and, (3) the required communications and interactions between the servo-actuator and the servo-electronics designers.
A-6A3 Flight Control and Vehicle Management Systems Cmt
The tests are static in nature to minimize complexity and cost of required testing facilities. As far as practical, applied static loads should take into account the combined static and dynamic loads anticipated in service. It is intended that tests shall be non-destructive in nature and not result in damage unless ultimate load conditions are employed. Test equipment and methods of testing described are not meant to be restrictive. Alternate equivalent methods to accomplish the desired results may be employed. In selected cases, tests may be repeated under ultimate load conditions when required for substantiation of analytical data. If this becomes necessary, the parts deformed may be removed and replaced prior to the retest.
AGE-2 Air Cargo
This SAE Aerospace Information Report (AIR) discusses the nature of landing gear stability, describes many common landing gear stability problems, and suggests approaches and methods for solving or avoiding them.
A-5B Gears, Struts and Couplings Committee
This SAE Aerospace Information Report (AIR) covers, and is restricted to, hands-on servicing/ maintenance of industrial lead acid batteries used solely for motive power and exclusively for ground support equipment (GSE). It does not address or pertain to automotive-type SLI (starting-lighting-ignition) batteries or any other types of batteries (such as nickel-cadmium, zinc, or lithium batteries) which may be on-board airport GSE for either motive power or auxiliary uses. Similarly, the battery servicing and charging facilities described herein are those intended exclusively for industrial lead acid batteries.
AGE-3 Aircraft Ground Support Equipment Committee
The recommendations of this SAE Aerospace Recommended Practice (ARP) for aircraft compartment automatic temperature control systems are primarily intended to be applicable to occupied or unoccupied compartments of civil and military aircraft.
AC-9 Aircraft Environmental Systems Committee
This document discusses a recommended new approach to integrate probabilistic methodologies with design practices, procedures, and software codes currently being used. In addition to complementing design methods currently in use, this new procedure will permit the designer to quantify the amount of conservatism that exists for a particular design due to the large amount of additional information which is provided to the designer. This additional information will allow the designer to make better decisions when faced with tradeoffs between cost, reliability, performance, and weight. Although the methodologies described herein can be used heavily in the design process, their applicability is much more encompassing. They can be used from product concept to customer delivery.
G-11 Probabilistic Methods and Uncertainty Quantification
This SAE Aerospace Recommended Practice (ARP) describes the design conditions under which tests should be conducted to demonstrate satisfactory performance of a flight critical servo-actuator under the maximum allowable particulate contamination in the associated airplane hydraulic system. Additionally, this document also describes the recommended tests and the required acceptance criteria.
A-6B1 Hydraulic Servo Actuation Committee
This Aerospace Information Report (AIR) is presented in two parts. The first part is simply a summarization of design factors that must be considered in establishing vehicle specifications and design characteristics. The second part refers particularly to the performance characteristics of an aircraft tow tractor. Some definitions, formulas, data, and an example are provided mainly for assisting the specifying engineers of potential buyers and users of aircraft tow tractors in the evaluation and comparison of their requirements with the performance capabilities of the various tow tractors offered by the tow tractor manufacturers. Although the design engineers could also use the formulas and data in their calculations of the performance specifications of aircraft tow tractors, this AIR is not intended to provide the methods and all data necessary for detailed calculations and design of an aircraft tow tractor.
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Aerospace Recommended Practice (ARP) describes a two-pole electric connector for use in battery powered ground support equipment, i.e., traction batteries. Alternatively, the connector can have two or more auxiliary contacts for auxiliary circuits. A handle may be added as an option to assist in connecting and disconnecting.
AGE-3 Aircraft Ground Support Equipment Committee
This document provides information, guidelines, and practices for the application, use, and administration of two-dimensional and three-dimensional droplet impingement and ice accretion computer codes. The codes provide computational simulations of inflight icing that predict droplet trajectory, water loading, and ice accretion on aircraft components. These ice accretion characteristics are used during the aircraft design and certification process.
AC-9C Aircraft Icing Technology Committee
The aircraft landing gear is a complex multi-degree of freedom dynamic system, and may encounter vibration or dynamic response problems induced by braking action. The vibratory modes can be induced by brake and tire-ground frictional characteristics, antiskid operation, brake design features, landing gear design features, and tire characteristics. The impact of this vibration can range from catastrophic failure of critical system components or entire landing gears, to fatigue of small components, to passenger annoyance. It is therefore important that the vibration is assessed during the design concept phase, and verified during the development and testing phases of the system hardware. This SAE Aerospace Information Report (AIR) has been prepared by a panel of the A-5A Subcommittee to present an overview of the landing gear problems associated with aircraft braking system dynamics, and the approaches to the identification, diagnosis, and solution of these problems. All pertinent system
A-5A Wheels, Brakes and Skid Controls Committee
This SAE Aerospace Information Report (AIR) addresses the following: 1 Captures previous experience and lessons learned in the application of PM. 2 Tabulates public-domain applications, and several representative examples discussed in detail. 3 Notes relative merits and barriers to implementation. The document does not contain technical details of probabilistic methods, benchmarking of specific approaches or legal aspects. These subjects are covered in other AIRs, referenced in Section 2 and prepared by the Probabilistic Methods Committee of the G-11 Reliability, Maintainability, Supportability and Logistics (RMSL) Division of SAE.
G-11 Probabilistic Methods and Uncertainty Quantification
This SAE Recommended Practice defines an architecture, including operating modes, in which an advanced driver interface system and related software exist. It also provides reference to a set of Federal Highway Administration approved guidelines for human factors characteristics of such systems and related software.
Truck and Bus Electrical * Electronic Steering Committee
This document describes a standard method to collect and report dielectric data for the purpose of monitoring or studying the cure of composites.
AMS P17 Polymer Matrix Composites Committee
This SAE Aerospace Recommended Practice (ARP) document establishes criteria and recommended practices for the use of airborne icing tankers to aid in design and certification of aircraft ice protection systems and components. Several icing tankers are described, along with their capabilities and suggested use. Sample data for these tanker spray systems are included, shown with 14 CFR Parts 25 and 29, Appendix C icing envelopes for continuous maximum and intermittent maximum icing conditions. (Note: In the remainder of this document, the phrase “Appendix C icing envelopes” will be used for brevity.) This ARP is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
AC-9C Aircraft Icing Technology Committee
Modern air vehicles consist of many subsystems, traditionally managed as a federation of independent subsystems. Advances in control technologies, digital electronics and electro-mechanical hardware, provide potential opportunities to integrate subsystems for future aircraft. This document does not define any particular integration strategy. Its purpose is to provide information about traditional federated subsystems from the functional, control, resource, and hardware perspective. To be able to integrate subsystems, one must have a basic understanding of the subsystems, and this document provides an introduction or starting point for initiating the integration process. The focus is on the aircraft subsystems, which includes utility, flight and propulsion control (e.g., electric power, environmental control subsystem (ECS), fuel, etc.) The depth of the information intends to provide an introduction to the subsystems. Trade studies must be performed to maximize the potential benefits of
A-6A3 Flight Control and Vehicle Management Systems Cmt
This SAE Aerospace Information Report (AIR) addresses the following: a Perceptions which inhibit the introduction of probabilistic methods b Technical limitations of probabilistic methods c Recommendations to help promote the use of probabilistic methods The document does not contain technical details of probabilistic methods, applications or benchmarking of specific approaches. These subjects are covered in other AIRs, referenced in Section 2 and prepared by the Probabilistic Methods Committee of the G-11 Reliability, Maintainability, Supportability and Logistics (RMSL) Division of SAE.
G-11 Probabilistic Methods and Uncertainty Quantification
This document specifies the interface and the behavior of the VHDL-AMS packages for use in modeling statistical behavior. These packages are useful in defining the statistical variation of parameters of electrical, electronic, and mechatronic components and sub-systems. These can then be used with simulation tools to analyze the performance and reliability of systems composed of these components and sub-systems. Providing a standard definition of the package interfaces and their behavior is intended to facilitate the exchange of models between component and system manufacturers and the use of different CAE simulation tools. The SAE statistical package supports the statistical modeling of design parameters subject to tolerances for designs described using the VHDL or VHDL-AMS languages. The performance of a design that uses this package to model parameter tolerances may be analyzed by a Monte Carlo simulation, which consists of multiple simulation runs of the design, each run with a
Electronic Design Automation Standards Committee
This SAE Information Report describes results of testing of the SAE J1746 ISP-Vehicle Standard for the communication of spatial data references between central sites and mobile vehicles on roads. Testing was performed by the Oak Ridge National Laboratory and its contractors, resulting in a document from which this Information Report has been extracted. Tests were performed by computer analysis and corroborated by field tests with a mobile vehicle.
ITS Council
This SAE Recommended Practice promotes uniformity in the characterization tests conducted on sprays generated by automotive fuel injectors used in both port fuel injection and gasoline-direct injection engine applications. SAE J2715 contains the detailed background, procedures and data reduction protocols for nearly all fuel spray characterization metrics that are applicable to automotive applications. It is intended to be utilized in conjunction with other SAE J documents that address injector performance metrics. These are SAE J1832 for Port Fuel Injection and the forthcoming SAE J2713 for Gasoline Direct Injectors.
Gasoline Fuel Injection Standards Committee
This document establishes the requirements for technical content and format of hydraulic system diagrams. This document does not establish configuration requirements, material, or performance requirements for any system or component identified herein.
Ship Fluid Systems Committee
The LRMS is intended to provide a practical approach to standardization for location referencing within a mixed data set environment, i.e., where more than one kind of spatial data set exists, and where spatial references between these data sets must be made. Although some ITS applications in local areas may be satisfied by having one common data set— for which location references may be implemented in any number of ways— many ITS applications will have broad interoperability requirements within the nation or a region. For example, a vehicle driven from California to Florida in the U.S. should be able to receive and understand spatial references for traffic information or routing instructions throughout the trip. Similarly, information sent from a vehicle to a central site should be understood in any city regardless of the kinds of data sets in use, whether they are public or private, or how locations are referenced internally to particular data sets. The LRMS can be applied to ITS
ITS Council
This specification covers disinfectants or chemicals for use in disinfecting aircraft after carrying livestock.
AMS J Aircraft Maintenance Chemicals and Materials Committee
This specification covers an aluminum alloy in the form of die forgings 4 inches (102 mm) and under in nominal thickness and forging stock of any size (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers a corrosion- and heat-resistant nickel-iron alloy in the form of bars, forgings, and flash-welded rings 5.0 inches (127 mm) and under in nominal diameter, or maximum cross-sectional distance between parallel sides (thickness), and stock of any size for forging or flash-welded rings.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a runway deicing and anti-icing product in the form of a solid. Unless otherwise stated, all specifications referenced herein are latest (current) revision.
G-12RDP Runway Deicing Product Committee
This specification covers runway deicing and anti-icing products in the form of a liquid. Unless otherwise stated, all specifications referenced herein are latest (current) revision.
G-12RDP Runway Deicing Product Committee
This specification covers one type of bronze in the form of bars and rods of any size, and tubing over 1.00 inch (25.4 mm) in nominal outer diameter (see 8.5).
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of sheet and plate from 0.008 to 2.000 inches (0.20 to 50.80 mm), inclusive, in thickness, supplied in the annealed (O) condition (see 8.5).
AMS D Nonferrous Alloys Committee
This specification covers discontinuously reinforced aluminum alloy (DRA) metal matrix composites (MMC) made by mechanical alloying of 6061B aluminum powder and SiC particulate, which is then consolidated by Hot Isostatic Pressing (HIP) into shapes between 12 to 100 square inches (0.008 to 0.065 m2), inclusive, cross-section. Tensile property response to heat treatment has been demonstrated on samples of 1 square inch (645 mm2) maximum cross section (see 8.9).
AMS D Nonferrous Alloys Committee
This specification covers a fluorocarbon elastomer that can be used to manufacture product in the form of sheet, strip, tubing, extrusions, and molded shapes. For molded rings, molded compression seals, and molded-in-place gaskets for aeronautical and aerospace applications, use the AMS7379 specification.
AMS CE Elastomers Committee
This specification covers one type of titanium alloy plate in the beta-annealed condition up through 4.000 inches (101.60 mm) inclusive, in thickness (see 8.6).
AMS G Titanium and Refractory Metals Committee
This specification covers a corrosion- and heat-resistant steel in the form of welded tubing.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel in the form of sheet, strip, and plate over 0.005 inch (0.13 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an aluminum alloy in the form of extruded profiles 0.500 to 1.750 inches thick (12.70 to 44.20 mm), inclusive, with a maximum cross-sectional area of 20 square inches (129 cm2) and a maximum circle size of 10 inches (254 mm).
AMS D Nonferrous Alloys Committee
This specification covers a titanium alloy in the form of sheet, strip, and plate up through 4.000 inches (101.60 mm), inclusive (see 8.5).
AMS G Titanium and Refractory Metals Committee
This specification covers the requirements for electrodeposited chromium plating.
AMS B Finishes Processes and Fluids Committee
This specification covers nonfluorescent magnetic particles in the form of a mixed, ready-to-use suspension in an odorless inspection oil vehicle. The magnetic particles shall be in the form of either a single material or composite material as defined in 1.3.
AMS K Non Destructive Methods and Processes Committee
This specification covers a titanium alloy in the form of forgings 3.000 inches (76.20 mm) and under in nominal diameter or least distance between parallel sides and 9 square inches (58 cm2) and under in cross-sectional area and forging stock of any size (see 8.6).
AMS G Titanium and Refractory Metals Committee
This specification covers one grade (Grade 1) of commercially-pure titanium in the form of sheet, strip, and plate up through a thickness of 1.000 inch (25.40 mm), inclusive.
AMS G Titanium and Refractory Metals Committee
Items per page:
1 – 50 of 211951