Your Selections

Singh, Eshan
Show Only


File Formats

Content Types









Knock and Pre-Ignition Limits on Utilization of Ethanol in Octane–on–Demand Concept

King Abdullah Univ. of Science & Tech.-Eshan Singh, Robert Dibble
Saudi Aramco-Kai Morganti
  • Technical Paper
  • 2019-24-0108
To be published on 2019-09-09 by SAE International in United States
Octane-on-Demand (OoD) is a viable technology for reducing global greenhouse emissions from automobiles. The concept utilizes a low-octane fuel for most operating conditions. Previous research has focused on the minimum ethanol content required for achieving a specific load at a given speed as the low-octane fuel becomes knock limited as the load increases. However, it is also widely known that ethanol has a high tendency to pre-ignite, attributed by few to its high laminar flame speed and surface ignition tendency. Moreover, ethanol has a lower calorific value, requiring a larger fuel mass to be injected to achieve similar power. A larger fuel mass increases the oil dilution by the liquid fuel, creating precursors for pre-ignition. Hence the limits on ethanol addition owing to pre-ignition also needs consideration before the technology can be implemented. In this regard, experiments were performed using light naphtha RON 68 gasoline and ethanol, in direct and port injection configuration respectively. Load was parametrically swept by increasing the intake air and fuel quantity, until pre-ignition limited IMEP was reached. Three different engine…

Mechanism Triggering Pre-Ignition in a Turbo-Charged Engine

King Abdullah University of Science & Technology-Eshan Singh, Robert Dibble
Published 2019-04-02 by SAE International in United States
Pre-ignition in modern engines is largely attributed to oil-fuel mixture droplets igniting before the spark timing. Researchers have also found pre-ignition events to be triggered by high hydrocarbon emissions from the previous cycle as well as late spark timing in the previous cycle. Additionally, an ideally scavenged engine was not found to be limited by pre-ignition. These observations point to a significant role of residuals in triggering pre-ignition events. Current work studies pre-ignition in a probabilistic approach. The effect of residuals and in-cylinder thermodynamic state is studied by varying the exhaust back pressure and intake air temperature respectively. Experiments were performed with a fixed mass flow rate of air + fuel and intake air temperature while the exhaust back pressure was varied. Intake air pressure varied in response to fixed intake temperature. Pre-ignition and super-knock count increased with increasing exhaust back pressure. In the next set of experiments, mass flow rate of air + fuel and intake air pressure were fixed, while the exhaust back pressure was varied. Intake air temperature was varied to fix…
Datasets icon
Annotation icon

Effect of Different Fluids on Injection Strategies to Suppress Pre-Ignition

King Abdullah University of Science & Technology-Eshan Singh, Ponnya Hlaing, Hao Shi, Robert Dibble
Published 2019-04-02 by SAE International in United States
Pre-ignition is an abnormal engine combustion phenomenon where the inducted fuel-air charge ignites before the spark ignition. This premature combustion phenomenon often leads to heavy knocking events. The mixture preparation plays a critical role in pre-ignition tendency for a given load. Literature shows efforts made towards improving pre-ignition-limited-IMEP by splitting the injection pulse into multiple pulses. In this study, two direct injectors are used in a single cylinder research engine. A centrally mounted direct injector was used to inject Coryton Gasoline (RON 95) fuel early in the intake stroke. A second fluid was injected late in the compression stroke to suppress pre-ignition. The fluids used in the second direct injector was varied to see the effects of the molecule and its physical and chemical property on pre-ignition suppression tendency. Methanol, ethanol, water, and gasoline were tested as second fluid. Engine tests were conducted at 2000 rpm and at an intake pressure of 2.1 bar (abs). Although alcohols show high pre-ignition tendency as fuels, they were most effective at pre-ignition suppression when injected later in the…
Datasets icon
Annotation icon

Effectiveness of Fuel Enrichment on Knock Suppression in a Gasoline Spark-Ignited Engine

King Abdullah University of Science & Tech.-Eshan Singh, Robert Dibble
Published 2018-09-10 by SAE International in United States
Knock, and more recently, super-knock, have been limiting factors on improving engine efficiency. As a result, engines often operate rich at high loads to avoid damage resulting from knock and protect the after-treatment system from excessive thermal stress. In this work, port-fuel injection and direct injection of excess fuel is explored as a mechanism to suppress knock and super-knock. Under naturally aspirated conditions, increasing the fuel enrichment initially increases knock intensity. However, further increasing fuel enrichment subsequently decreases knock intensity. The competing mechanism from calorific value and latent heat of vaporization can be used to explain the phenomenon. However, when directly injecting the excess fuel after the spark plug has been fired, knock intensity monotonically decreases with increasing fuel quantity. This decrease is shown to be due to fuel quenching the flame that is propagating from spark location. Under boosted conditions, the amount of fuel injected is of critical importance in avoiding super-knock. A lower fuel quantity leads to knock suppression. But beyond a critical value, higher quantities of fuel result in more interaction with…
Datasets icon
Annotation icon

Effect of Mixture Formation and Injection Strategies on Stochastic Pre-Ignition

King Abdullah University of Science & Tech.-Eshan Singh, Mohammed Jaasim Mubarak Ali, Adrian Ichim, Robert Dibble
Saudi Aramco-Kai Morganti
Published 2018-09-10 by SAE International in United States
Stochastic pre-ignition remains one of the major barriers limiting further engine downsizing and down-speeding; two widely used strategies for improving the efficiency of spark-ignited engines. One of the most cited mechanisms thought to be responsible for pre-ignition is the ignition of a rogue droplet composed of lubricant oil and fuel. This originates during mixture formation from interactions between the fuel spray and oil on the cylinder liner. In the present study, this hypothesis is further examined using a single cylinder supercharged engine which employs a range of air-fuel mixture formation strategies. These strategies include port-fuel injection (PFI) along with side and central direct injection (DI) of an E5 gasoline (RON 97.5) using single and multiple injection events. Computational fluid dynamic (CFD) calculations are then used to explain the observed trends. Overall, this study reinforces that interactions between the fuel spray and oil on the cylinder liner can be an important contributor towards stochastic pre-ignition. The occurrence of pre-ignition, as shown by CFD calculations, is successful after completion of two stages. The first stage involves the…
Datasets icon
Annotation icon

Blending Behavior of Ethanol with PRF 84 and FACE A Gasoline in HCCI Combustion Mmode

King Abdullah Univ. of Science & Tech.-Muhammad Umer Waqas, Nour Atef, Eshan Singh, Jean-Baptiste MASURIER, Mani Sarathy, Bengt Johansson
Published 2017-09-04 by SAE International in United States
The blending of ethanol with PRF (Primary reference fuel) 84 was investigated and compared with FACE (Fuels for Advanced Combustion Engines) A gasoline surrogate which has a RON of 83.9. Previously, experiments were performed at four HCCI conditions but the chemical effect responsible for the non-linear blending behavior of ethanol with PRF 84 and FACE A was not understood. Hence, in this study the experimental measurements were simulated using zero-dimensional HCCI engine model with detailed chemistry in CHEMKIN PRO. Ethanol was used as an octane booster for the above two base fuels in volume concentration of 0%, 2%, 5% and 10%.The geometrical data and the intake valve closure conditions were used to match the simulated combustion phasing with the experiments. Low temperature heat release (LTHR) was detected by performing heat release analysis. LTHR formation depended on the base fuel type and the engine operating conditions suggesting that the base fuel composition has an important role in the formation of LTHR. The effect of ethanol on LTHR was explained by low temperature chemistry reactions and OH/HO2…
Datasets icon
Annotation icon

Simulating HCCI Blending Octane Number of Primary Reference Fuel with Ethanol

King Abdullah University of Science and Technology-Eshan Singh, Muhammad Waqas, Bengt Johansson, Mani Sarathy
Published 2017-03-28 by SAE International in United States
The blending of ethanol with primary reference fuel (PRF) mixtures comprising n-heptane and iso-octane is known to exhibit a non-linear octane response; however, the underlying chemistry and intermolecular interactions are poorly understood. Well-designed experiments and numerical simulations are required to understand these blending effects and the chemical kinetic phenomenon responsible for them. To this end, HCCI engine experiments were previously performed at four different conditions of intake temperature and engine speed for various PRF/ethanol mixtures. Transfer functions were developed in the HCCI engine to relate PRF mixture composition to autoignition tendency at various compression ratios. The HCCI blending octane number (BON) was determined for mixtures of 2-20 vol % ethanol with PRF70. In the present work, the experimental conditions were considered to perform zero-dimensional HCCI engine simulations with detailed chemical kinetics for ethanol/PRF blends. The simulations used the actual engine geometry and estimated intake valve closure conditions to replicate the experimentally measured start of combustion (SOC) for various PRF mixtures. The simulated HCCI heat release profiles were shown to reproduce the experimentally observed trends, specifically…
Datasets icon
Annotation icon

Compositional Effects of Gasoline Fuels on Combustion, Performance and Emissions in Engine

SAE International Journal of Fuels and Lubricants

King Abdullah Univ of Science & Tech-Ahfaz Ahmed, Muhammad Waqas, Nimal Naser, Eshan Singh, William Roberts, Sukho Chung, Mani Sarathy
  • Journal Article
  • 2016-01-2166
Published 2016-10-17 by SAE International in United States
Commercial gasoline fuels are complex mixtures of numerous hydrocarbons. Their composition differs significantly owing to several factors, source of crude oil being one of them. Because of such inconsistency in composition, there are multiple gasoline fuel compositions with similar octane ratings. It is of interest to comparatively study such fuels with similar octane ratings and different composition, and thus dissimilar physical and chemical properties. Such an investigation is required to interpret differences in combustion behavior of gasoline fuels that show similar knock characteristics in a cooperative fuel research (CFR) engine, but may behave differently in direct injection spark ignition (DISI) engines or any other engine combustion modes. Two FACE (Fuels for Advanced Combustion Engines) gasolines, FACE F and FACE G with similar Research and Motor Octane Numbers but dissimilar physical properties were studied in a DISI engine under two sets of experimental conditions; the first set involved early fuel injection to allow sufficient time for fuel-air mixing hence permitting operation similar to homogenous DISI engines, while the second set consists of advance of spark timings…
Annotation icon