Your Selections

Shangguan, Wen-Bin
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Modeling and Validation for the Hysteretic Behavior of an Automatic Belt Tensioner

BYD Auto Industry Company Limited-Pu Xu
South China University of Technology-Shangbin Long, Xuezhi Zhao, Wen-Bin Shangguan
Published 2019-06-05 by SAE International in United States
An automatic tensioner used in an engine front end accessory drive system (EFEADS) is taken as a study example in this paper. The working torque of the tensioner, which consists of the spring torque caused by a torsional spring and the frictional torques caused by the contact pairs, is analyzed by a mathematic analysis method and a finite element method. And the calculation and simulation are validated by a torque measurement versus angular displacement of a tensioner arm. The working torques of the tensioner under a loading and an unloading process are described by a bilinear hysteretic model, and are written as a function with a damping ratio. The rule of the action for the damping devices is investigated based on the simulation and a durability test of the tensioner. A finite element method for the tensioner without damping device is established. Then the radial deformation for the torsional spring under an unconstrained state is obtained. The analysis results have a good correlation with the measurements. The method presented in this paper is beneficial for…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Kinematic Analysis and Simulation of the Double Roller Tripod Joint

South China University of Technology-Yinyuan Qiu, Wen-Bin Shangguan
Published 2019-06-05 by SAE International in United States
The kinematic model of the double roller tripod joint is established in order to analyze its kinematic characteristics and provide theoretical basis for its application and improvement. By means of spatial coordinate transformation, the translational and rotational motion equations of the rollers relative to the tracks and trunnions, the motion equation of the center of the tripod and the equations of the input/output angular displacement error and bending angle are derived. The motion simulation of the double roller tripod universal joint was carried out in ADAMS so as to verify the established kinematic model. The results show that the rollers of the double roller tripod joint only have periodic translational motions relative to the tracks while the rollers have both periodic translational and rotational motions relative to the trunnions. The tripod’s center does the circular motion on the tripod plane with the angular velocity 3 times of the input angular velocity. The input/output angular displacement error and bending angle have volatility, and their fluctuating frequency are 3 times of the input rotational frequency. Hence, the…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Control Strategy to Reduce Torque Oscillation of the Electric Power Steering System

Concordia University Montreal-Subhash Rakheja
South China University of Technology-Duo Fu, Wen-Jun Yan, Wen-Bin Shangguan
Published 2019-06-05 by SAE International in United States
This paper proposes a new evaluation method of analyzing stability and design of a controller for an electric power steering (EPS) system. The main purpose of the EPS system’s control design is to ensure a comfortable driving experience of drivers, which mainly depends on the assist torque map. However, the high level of assist gain and its nonlinearity may cause oscillation, divergence and instability to the steering systems. Therefore, an EPS system needs to have an extra stability controller to eliminate the side effect of assist gain on system stability and attenuate the unpleasant vibration. In this paper, an accurate theoretical model is built and the method for evaluating system quality are suggested. The bench tests and vehicle experiments are carried out to verify the theoretical analysis. The evaluation method proposed in this paper can not only guide the design of controller parameters, but also evaluate the control effect while the performance of several controllers are all excellent.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design of Isolation Pulley in Front of Crankshaft to Reduce Vibrations of Front End Accessory Drive System

South China University of Technology-Wen-Bin Shangguan, Xiao Feng
Published 2015-06-15 by SAE International in United States
The driving pulley is often used as a Torsional Vibration Damper (TVD) for the crankshaft in the front end accessory drive (FEAD) system. Although the crankshaft torsional vibrations are dampened, they are transmitted to the belt transmission and therefore to the driven accessories. The isolation pulley is a new device to reduce the belt tension fluctuation by isolating the belt transmission from the crankshaft torsional vibrations. A five-pulley system with isolation pulley is presented and a non-linear model is established to predict the dynamic response of the pulleys, tensioner motion, tension fluctuation and slippage. The model works in the time domain with Runge-Kutta time-stepping algorithm. The numerical simulation results of harmonic excitations show that the amplitudes of the belt tension fluctuation and the vibrations of each component are reduced significantly. Moreover, the effect of isolation pulley parameters on the system natural frequencies is demonstrated. It is shown that natural frequency of the system is reduced by using lower stiffness and thus the crankshaft torsional vibrations are isolated.
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Multi-Mode and Rubber-Damped Torsional Vibration Absorbers for Engine Crankshaft Systems

Tuopu Group-Wei Gao, Kai-Hong Jiang, Dino Zonni
Tuopu Group and South China University of Technology-Wen-Bin Shangguan
Published 2007-05-15 by SAE International in United States
With the development of light weight design and the high power output of an engine, and since the damping of rubber materials is relatively low, the effectiveness of torsional vibration (TV) control for an engine crankshaft with an ordinary Single Mode and rubber-damped TV Absorber (SMTVA) is limited. Here, a SMTVA references to a TVA with only one inertial mass. In this paper, the configurations of some Multi-Mode and rubber-damped TV Absorbers (MMTVA) having more than one inertial mass are introduced firstly, then a detailed procedure for modeling a torsional vibration system for a generic crankshaft system is presented. Thirdly, an optimization method for determining the design parameters of a MMTVA (mass ratios, frequency ratios and damping ratios) is developed. The proposed calculation method is based on reducing the torsional vibration of a crankshaft. An example is given for demonstrating the effectiveness of the proposed method and the MMTVA in reducing the TV of a crankshaft. The calculated results show that MMTVA can reduce crankshaft TV greatly although the damping of each SMTVA in a…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Dynamic Characteristic Analysis of a Hydraulic Engine Mount with Lumped Model Based on Finite Element Analysis

Tsinghua University-Wen-Bin Shangguan, Zhen-Hua LU
Published 2003-05-05 by SAE International in United States
Hydraulic Engine Mount (HEM) is now widely used as a highly effective vibration isolator in automotive powertrain. A lumped parameter model is a traditional model for modeling the dynamic characteristics of HEM, in which the system parameters are usually obtained by experiments. In this paper, Computational Fluid Dynamics (CFD) method and nonlinear Finite Element Analysis (FEA) are used to determine the system parameters. A Fluid Structure Interaction (FSI) FEA technique is used to estimate the parameters of volumetric compliances, equivalent piston area, inertia and resistance of the fluid in the inertia track and decoupler of a HEM. A nonlinear FEA method is applied to determine the dynamic stiffness of rubber spring of the HEM. The system parameters predicated by FEA are compared favorably with experimental data and/or analytical solutions. A numerical simulation for an HEM with an inertia track and a free decoupler is performed based on the lumped model and using the estimated system parameters, and again the simulation results are compared with experimental data. The calculated time histories of some variables in the…
Annotation ability available