Your Selections

Rigby, David L.
Show Only


File Formats

Content Types








   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Simulation of Ice Particle Breakup and Ingestion into the Honeywell Uncertified Research Engine (HURE)

NASA Glenn Research Center-Ashlie Flegel, Michael King
Vantage Partners Limited-David L. Rigby, William Wright
Published 2019-06-10 by SAE International in United States
Numerical solutions have been generated which simulate flow inside an aircraft engine flying at altitude through an ice crystal cloud. The geometry used for this study is the Honeywell Uncertified Research Engine (HURE) which was recently tested in the NASA Propulsion Systems Laboratory (PSL) in January 2018. The simulations were carried out at predicted operating points with a potential risk of ice accretion. The extent of the simulation is from upstream of the engine inlet to downstream past the strut in the core and bypass. The flow solution is produced using GlennHT, a NASA in-house code. A mixing plane approximation is used upstream and downstream of the fan. The use of the mixing plane allows for steady state solutions in the relative frame. The flow solution is then passed on to LEWICE3D for particle trajectory, impact and breakup prediction. The LEWICE3D code also uses a mixing plane approximation at the boundaries upstream and downstream of the fan. A distribution of particle sizes is introduced upstream, based on the distribution measured during the test. Predicted collection…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Three Dimensional Simulation of Flow in an Axial Low Pressure Compressor at Engine Icing Operating Points

NASA John Glenn Research Center-Joseph Veres, Colin Bidwell
Vantage Partners Limited-David L. Rigby
Published 2015-06-15 by SAE International in United States
Three-dimensional simulations of the Honeywell ALF502 low pressure compressor (sometimes called a booster) using the NASA Glenn code GlennHT have been carried out. A total of eight operating points were investigated. These operating points are at, or near, points where engine icing has been determined to be likely. The results of this study were used, in a companion paper, for further analysis such as predicting collection efficiency of ice particles and ice growth rates at various locations in the compressor. In an effort to minimize computational effort, inviscid solutions with slip walls are produced. A mixing plane boundary condition is used between each blade row, resulting in convergence to steady state within each blade row. Comparisons of the results are made to other simplified analysis. An additional modification to the simulation process is also presented. At each mixing plane (located between blade rows) it is possible to introduce ad hoc adjustments to the flow properties. The justification for making adjustments will be discussed. At each mixing plane it is possible to bring the average conditions…
Annotation ability available