Your Selections

Putala, Brian
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

 

A Study of Hybrid III 5th Percentile Female ATD Chest Accelerometers to Assess Sternum Compression Rate in Chest on Module Driver Out-of-Position Evaluations

General Motors Company-Ke Dong, Brian Putala, Kristen Ansel
Published 2017-03-28 by SAE International in United States
Driver out-of-position (OOP) tests were developed to evaluate the risk of inflation induced injury when the occupant is close to the airbag module during deployment. The Hybrid III 5th percentile female Anthropomorphic Test Device (ATD) measures both sternum displacement and chest acceleration through a potentiometer and accelerometers, which can be used to calculate sternum compression rate. This paper documents a study evaluating the chest accelerometers to assess punch-out loading of the chest during this test configuration. The study included ATD mechanical loading and instrumentation review. Finite element analysis was conducted using a Hybrid III - 5th percentile female ATD correlated to testing. The correlated restraint model was utilized with a Hybrid III - 50th percentile male ATD. A 50th percentile male Global Human Body Model (HBM) was then applied for enhanced anatomical review. The results illustrate differences in chest response between the Hybrid III dummy and the human body model in chest on module driver OOP evaluations.
Datasets icon
Annotation icon
 

Safety Belt and Occupant Factors Influencing Thoracic & Upper Abdominal Injuries in Frontal Crashes

Crash Safety Consulting-Daniel Faust
General Motors Company-Huizhen Lu, Margaret Andreen, Lisa Furton, Brian Putala
Published 2011-04-12 by SAE International in United States
This paper reports on a study that examines the effect of shoulder belt load limiters and pretensioners as well as crash and occupant factors that influence upper torso harm in real-world frontal crashes. Cases from the University of Michigan International Center for Automotive Medicine (ICAM) database were analyzed. Additional information was used from other databases including the National Highway Traffic Safety Administration (NHTSA) New Car Assessment Program (NCAP), the Insurance Institute for Highway Safety (IIHS), the National Automotive Sampling System - Crashworthiness Data System (NASS-CDS), and patient data available from the University of Michigan Trauma Center. The ICAM database is comprised of information from real-world crashes in which occupants were seriously injured and required treatment at a Level 1 Trauma Center. Cases from the database were included in this study if they met the following criteria: (a) the primary collision involved a frontal type crash and; (b) case occupants were seated in front outboard positions, restrained by 3-point safety belts and deployed frontal airbags.One hundred thirty-three (133) case occupants who sustained nearly 1,800 injuries were…
Annotation icon