The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

Paramathma, Baskara Sethupathi
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Optimization of RF Magnetron Sputtering Parameters for Deposition of Zinc Oxide Semiconductor Film at Moderate Temperature of 100°C

Gwangju Institute of Science and Technology-Seong-Ju Park
PRIST-Amutha Surabi Muthukarappan
Published 2019-10-11 by SAE International in United States
Zinc oxide semiconductor thin films are deposited on glass substrate at different RF magnetron sputtering parameters. The deposited films were characterized as a function of substrate - target distance, gas flow ratio, working pressure and RF power. X-ray diffraction, Field emission scanning electron microscopy, and hall measurement were utilized to analyze the effect of the deposition condition on the structure, surface morphology and electrical properties of ZnO thin films. The deposition conditions were optimized to give good quality films suitable for the application of flexible or invisible flat panel display. All the films were deposited at 100°C.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Experimental Investigation of Silicon Carbide Nanoparticles Reinforced Magnesium Alloy (AZ91E) Metal Matrix Composite by Vacuum Stir Casting Method

Centre for Automotive Materials, SRMIST-Chandradass Jeyaseelan, Baskara Sethupathi Paramathma
PRIST-Thirugnana Sambandham Thangavel, Kannan Mahadevan
Published 2019-10-11 by SAE International in United States
In the present investigation silicon carbide nanoparticles reinforced magnesium alloy [AZ91E] composites were prepared by vacuum stir casting process in an inert atmosphere. Required amount of silicon carbide nanoparticles with grain size of 50nm was added into AZ91E molten melt with constant stir speed of 600 rpm and vacuum pressure of 1 lpm to obtain magnesium alloy composite containing 0, 5, 7.5 and 10 wt.% SiCp nanoparticles. The prepared composites were subjected to mechanical and microstructure studies. The mechanical properties were found to increase with the addition of silicon nanoparticles compared to unreinforced magnesium alloy. The maximum impact strength, yield strength and tensile strength were found to be 29.13J, 156 MPa and 401.13 MPa respectively. Microstructure studies reveal uniform distribution of silicon carbide in magnesium alloy matrix.
This content contains downloadable datasets
Annotation ability available