Your Selections

Pandey, Gaurav
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Localization Requirements for Autonomous Vehicles

SAE International Journal of Connected and Automated Vehicles

Ford Autonomous Vehicles, LLC, USA-Sarah E. Houts, Robert Cammarata, Graham Mills, Siddharth Agarwal, Ankit Vora
Ford Motor Company, USA-Tyler G.R. Reid, Gaurav Pandey
  • Journal Article
  • 12-02-03-0012
Published 2019-09-24 by SAE International in United States
Autonomous vehicles require precise knowledge of their position and orientation in all weather and traffic conditions for path planning, perception, control, and general safe operation. Here we derive these requirements for autonomous vehicles based on first principles. We begin with the safety integrity level, defining the allowable probability of failure per hour of operation based on desired improvements on road safety today. This draws comparisons with the localization integrity levels required in aviation and rail where similar numbers are derived at 10−8 probability of failure per hour of operation. We then define the geometry of the problem where the aim is to maintain knowledge that the vehicle is within its lane and to determine what road level it is on. Longitudinal, lateral, and vertical localization error bounds (alert limits) and 95% accuracy requirements are derived based on the United States (US) road geometry standards (lane width, curvature, and vertical clearance) and allowable vehicle dimensions. For passenger vehicles operating on freeway roads, the result is a required lateral error bound of 0.57 m (0.20 m, 95%),…
This content contains downloadable datasets
Annotation ability available