Search
Advanced Search
of the following are true
(
)

Results

Items (210,741)
This SAE Systems Management Standard specifies the Habitability processes throughout planning, design, development, test, production, use and disposal of a system. Depending on contract phase and/or complexity of the program, tailoring of this standard may be applied. Appendix C provides guidance on tailoring standard requirements to fit the various DoD acquisition pathways. The primary goals of a contractor Habitability program include: Ensuring that the system design complies with the customer Habitability requirements and that discrepancies are reported to management and the customer. Identifying, coordinating, tracking, prioritizing, and resolving Habitability risks and issues and ensuring that they are: ◦ Reflected in the contractor proposal, budgets, and plans. ◦ Raised at design, management, and program reviews. ◦ Debated in working group meetings. ◦ Coordinated with Training, logistics, and the other HSI disciplines. ◦ Included appropriately in documentation and deliverable
G-45 Human Systems Integration
In order to compare test results obtained from different crash test facilities, standardized coordinate systems need to be defined for crash test dummies, vehicle structures, and laboratory fixtures. In addition, recorded polarities for various transducer outputs need to be defined relative to positive directions of the appropriate coordinate systems. This SAE Information Report describes the standardized sign convention and recorded output polarities for various transducers used in crash testing
Safety Test Instrumentation Standards Committee
This SAE Aerospace Information Report (AIR) contains a description of the design approach, the calculations, some comparisons to alternate SAE Aerospace Recommended Practice (ARP) documents, and the background information used to generate the standard face seal gland dimensions specified in AS6235. NOTE: This AIR should be read in conjunction with AS6235. In some instances, the information contained within AS6235 is repeated for clarity
A-6C2 Seals Committee
THIS STANDARD ESTABLISHES THE DIMENSIONAL AND VISUAL QUALITY REQUIREMENTS, LOT REQUIREMENTS AND PACKAGING AND LABELING REQUIREMENTS FOR O-RINGS MOLDED FROM AMS7379 FLUOROCARBON (FKM) RUBBER. IT SHALL BE USED FOR PROCUREMENT PURPOSES
A-6C2 Seals Committee
This standard establishes the dimensional and visual quality requirements, lot requirements, and packaging and labeling requirements for O-rings molded from AMS7267 rubber. It shall be used for procurement purposes
A-6C2 Seals Committee
This SAE Aerospace Recommended Practice (ARP) contains guidance regarding hardware design and installation procedures for seals in hydraulic components that utilize standard seal glands in accordance with AS4716, AS4832, AS4088, AS4052, AS5857, and AS6235
A-6C2 Seals Committee
This standard establishes the dimensional and visual quality requirements, lot requirements and packaging and labeling requirements for O-rings molded from AMS7601 butyl rubber. It shall be used for procurement purposes
A-6C2 Seals Committee
This SAE Aerospace Recommended Practice (ARP) provides guidelines for the application of polymeric bearings for linear actuation systems. Design considerations are included for recommended fit and function in conjunction with material selection and load-bearing capability
A-6C2 Seals Committee
THIS STANDARD ESTABLISHES THE DIMENSIONAL AND VISUAL QUALITY REQUIREMENTS, LOT REQUIREMENTS, AND PACKAGING AND LABELLING REQUIREMENTS FOR METALLIC-ENCASED COPPER GASKETS MANUFACTURED PER AMS-HH-G-101 TYPE III - STYLE J. IT SHALL BE USED FOR PROCUREMENT PURPOSES
A-6C2 Seals Committee
This SAE Aerospace Standard (AS) defines gland details for scrapers for rod diameters from 1/4 to 15-1/2 inch (6.35 to 393.70 mm) inclusive, corresponding to AS568 O-ring Dash No. sizes -108/-111, -206/-222, -325/-349, and -425/-460. The gland details herein allow the use of more stable, efficient, and reliable scraper devices than MS33675 glands
A-6C2 Seals Committee
An attempt has been made to consider all features of seal ring design including configuration, materials, hardness, dimensions, surface finishes, surface treatment, leak testing, and general quality. In addition to this, allowable cylinder breathing and general quality requirements of mating hardware are discussed. Also, at the end of this report, there is a brief paragraph on other types of seal rings
A-6C2 Seals Committee
This SAE Aerospace Recommended Practice (ARP) provides an overview of the various types of polytetrafluoroethylene (PTFE) backup rings for hydraulic and pneumatic fluid power applications, including their advantages and disadvantages
A-6C2 Seals Committee
This SAE Standard establishes the requirements for lubricating oils containing ashless dispersant additives to be used in four-stroke cycle, reciprocating piston aircraft engines. This document covers the same lubricating oil requirements as the former military specification MIL-L-22851. Users should consult their airframe or engine manufacturer’s manuals for the latest listing of acceptable lubricants. Compliance with this specification must be accomplished in accordance with the Performance Review Institute (PRI) product qualification process as described in the documents referenced in 2.1.3. Requests for submittal information may be made to the PRI at the address shown in 2.1.3, referencing this specification. Products qualified to this specification are listed on a Qualified Products List (QPL) managed by the PRI. Approval and/or certification for use of a specific piston engine oil in aero applications is the responsibility of the individual equipment builders and/or governmental
E-38 Aviation Piston Engine Fuels and Lubricants
This specification controls surface condition, manufacturing defects and inspection requirements, and defines methods of measurement for elastomeric toroidal sealing rings (O-rings) for static (including gasket) applications
A-6C2 Seals Committee
This specification and part standard specifies polytetrafluoroethylene (PTFE) resin material and the dimensional requirements for scarf-cut retainers (backup rings) previously specified by MIL-R-8791 and MIL-R-8791/1. The retainers are intended for use in hydraulic and pneumatic system components as anti-extrusion devices in conjunction with seals and O-rings
A-6C2 Seals Committee
This SAE Recommended Practice establishes for passenger cars, light trucks, and multipurpose vehicles with GVW of 4500 kg (10000 pounds) or less: a Minimum performance standards for windshield wiper systems. b Test procedures that can be conducted on uniform test equipment by commercially available laboratory facilities. c Uniform terminology of windshield wiper system characteristics and phenomena consistent with those found in guides for the use of engineering layout studies to evaluate system performance. d Guides for the design and location of components of the systems for function, servicing of the system, etc. The test procedures and minimum performance standards outlined in this document are based on currently available engineering data. It is the intent that all portions of the document will be periodically reviewed and revised as additional data regarding windshield wiping system performance are developed
Wiper Standards Committee
This standard establishes the dimensional and visual quality requirements, lot requirements, and packaging and labeling requirements for O-rings machined from AMS3617 polyamide material. It shall be used for procurement purposes
A-6C2 Seals Committee
This SAE Aerospace Recommended Practice (ARP) presents two BASIC language computer programs to promote and standardize the computation of installed O-ring cross-section deflection hereafter referred to as "squeeze" and the computation of gland volume. The two programs were written with line numbers and without use of any system specific BASIC commands to allow usage with as many systems as possible with a minimum of editing. The programs support entry of customary U.S. or metric dimensions. The squeeze program, called SQ.BAS, has the following features: a allows selection of either piston or rod gland b allows entry of cap strip seal thickness c computes minimum and maximum squeeze d allows checking and correction of entries before execution e allows viewing of output on screen before printing f gives advisory messages for excessive stretch or inadequate squeeze g allows on-line review of essential input and output variables prior to running program h computes clearance between minimum
A-6C2 Seals Committee
This SAE Standard was developed to provide a method for indicating the direction of engine rotation and numbering of engine cylinders. The document is intended for use in designing new engines to eliminate the differences which presently exist in industry
Engine Power Test Code Committee
THIS STANDARD ESTABLISHES THE DIMENSIONAL AND VISUAL QUALITY REQUIREMENTS, LOT REQUIREMENTS, AND PACKAGING AND LABELING REQUIREMENTS FOR O-RINGS MOLDED FROM AMS7410 FLUOROCARBON (FKM) RUBBER. IT SHALL BE USED FOR PROCUREMENT PURPOSES
A-6C2 Seals Committee
This AIR documents the methodologies used to calculate the dimensions and tolerances used in the following backup rings standards: AS5781 AS5782 AS5860 AS5861 In addition, an appendix is provided which provides details of gland and backup ring design practices
A-6C2 Seals Committee
This standard establishes the dimensional and visual quality requirements, lot requirements, and packaging and labeling requirements for O-rings molded from AMS7274 rubber. It shall be used for procurement purposes
A-6C2 Seals Committee
This foundation specification (AMS1424S) and its associated category specifications (AMS1424/1 and AMS1424/2) cover a deicing/anti-icing material in the form of a fluid
G-12ADF Aircraft Deicing Fluids
This SAE Recommended Practice is intended for stakeholders of the automotive industry that are conducting emission testing on materials, parts, or components used in automotive interiors. Testing methods may specifically define the handling and packaging conditions for the material to be analyzed. In these cases, follow the method as closely as possible. Use this document as a guide where the protocol for handling and packaging the samples between production and testing may be undefined or ambiguous
Volatile Organic Compounds
Items per page:
1 – 50 of 210741