Your Selections

Natarajan, Vignesh
Show Only


File Formats

Content Types








   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development of Methodology to Determine Toe Geometry of any Vehicle at Its Early Design Stage for Optimum Tyre Life

Mahindra & Mahindra, Ltd.-Nitin Kumar Khanna, Karthik Senthi, Vignesh Natarajan
Published 2019-10-11 by SAE International in United States
Toe setting is one of the major wheel alignment parameters which directly effects handling of a vehicle. Correct toe setting ensures desired dynamic behavior of an automobile like straight line stability, cornering behavior, handling and tire durability. Incorrect setting of toe during design stage significantly deteriorates tire durability and leads to uneven tire wear. In the present scenario of automotive industry, toe setting is majorly an iterative or a trial and error process which is both time consuming and involves higher development cost as there may be instances where 2 to 3 sets of iterations are needed before specification is finalized for production. Therefore, determining optimum toe setting at an early stage of a product development will not only save significant development time but it will also benefit in reducing product validation time and cost. Through this paper an attempt has been made to develop a methodology for deciding toe setting for any vehicle as a first time right approach to cut down on conventional expensive & time consuming iterative approach. In this new methodology…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Thermal and Structural Analysis of Functionally Graded NiCrAlY/YSZ/Al2O3 Coated Piston

SAE International Journal of Materials and Manufacturing

Srivathsan Puzhuthivakkam Rengarajan, Vignesh Natarajan, Harikrishnan Kanagasabesan
College Of Engineering Chennai-Terrin P Babu
  • Journal Article
  • 2015-01-9081
Published 2015-05-01 by SAE International in United States
Functionally Graded Thermal Barrier Coatings (FG-TBC) increases the performance of high temperature components in gasoline engines by decreasing the thermal conductivity and increasing the unburned charge oxidation in the flame quenching area with the increase in temperature near the entrance of the crevice volume between the piston and the liner during the compression and the early part of the expansion strokes.In this study, a 3-D finite element steady state thermal and structural analysis are carried out on both uncoated and functionally graded NiCrAlY/YSZ/Al2O3 coated gasoline engine piston using a commercial code, namely ANSYS. The effects of coating on the thermo mechanical behaviours of the piston are investigated. It has been shown that the maximum surface temperature of the ceramic coated piston is improved approximately by 7% for the Al-Si alloy. The application of TBC enhances the Von Mises stress withstanding capacity approximately by 15% than the uncoated piston due to maximum temperature difference and difference in thermal expansion coefficients within the ceramic layers.
Annotation ability available