The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

Morin, Anne-Gäelle
Show Only


Content Types







   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Study on the effects on Diesel LTC combustion of 2-EHN as cetane improver

Universite D'Orleans-Fabrice Foucher
Université d'Orleans-Richard Oung
  • Technical Paper
  • 2020-01-1125
To be published on 2020-04-14 by SAE International in United States
A single cylinder Diesel engine was used to study Diesel and LTC combustion. We evaluated the 2-EthylHexyl Nitrate (2-EHN) as Cetane improver distributed by VeryOne@ on the combustion of six diesel fuel prepared from a low Cetane Number (CN) diesel fuel (CN of 43.7) and two biodiesel mixed at 20% with the low Cetane number diesel fuel : Soybean oil Methyl Ester (SME) and Rapeseed oil Methyl Ester (RME). Each fuels doped with the 2-EHN were prepared to meet the minimum European CN, 51. LTC strategies could provide low NOx emission without thermal efficiency deterioration. The study investigated engine operation at loads of 2, 6 and 10 bar IMEP at engine speed of 1250 rpm, 1500 rpm and 2000 rpm and the impact against synthetic EGR up to 30%. The low-temperature decomposition of 2-EHN, resulting in the oxidation of the fuel, makes it possible to achieve a very low cycle-to-cycle variation of the IMEP even at very low load or at a very high rate of EGR. From kinetic mechanism analysis, we had shown that…