Your Selections

Mikulski, Dariusz
Show Only


File Formats

Content Types








   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Trust-Based Control and Scheduling for UGV Platoon under Cyber Attacks

Clemson University-Fangjian Li, John R. Wagner, Yue Wang
U.S. Army TARDEC-Dariusz Mikulski
Published 2019-04-02 by SAE International in United States
Unmanned ground vehicles (UGVs) may encounter difficulties accommodating environmental uncertainties and system degradations during harsh conditions. However, human experience and onboard intelligence can may help mitigate such cases. Unfortunately, human operators have cognition limits when directly supervising multiple UGVs. Ideally, an automated decision aid can be designed that empowers the human operator to supervise the UGVs. In this paper, we consider a connected UGV platoon under cyber attacks that may disrupt safety and degrade performance. An observer-based resilient control strategy is designed to mitigate the effects of vehicle-to-vehicle (V2V) cyber attacks. In addition, each UGV generates both internal and external evaluations based on the platoons performance metrics. A cloud-based trust-based information management system collects these evaluations to detect abnormal UGV platoon behaviors. To deal with inaccurate information due to a V2C cyber attack, a RoboTrust algorithm is designed to analyze vehicle trustworthiness and eliminate information with low credit. Finally, a human operator scheduling algorithm is proposed when the number of abnormal UGVs exceeds the limit of what human operators can handle concurrently. Representative simulation results…
This content contains downloadable datasets
Annotation ability available