Search
Advanced Search
of the following are true
(
)

Results

Items (212,269)
The objective of this document is to define basic terms and definitions and to provide general guidance for M&S of aircraft EPS.
AE-7M Aerospace Model Based Engineering
This Interface Control Plan establishes a program for interface control among the major segments/equipments of a DoD program. This could be an airborne weapon system, Medium Launch Vehicle System, Space Launch Complex System, etc. The program is based on formal agreements between participating organizations, and includes (1) documentation to establish, define and control interface requirements and to detail interface design definition between system segments, (2) interface management under the purview of the Interface Management Boards (IMB) and (3) interface control, through Interface Control Working Groups (ICWGs). The plan establishes the IMB and ICWG policy and procedures. Furthermore, it sets forth the Government Agencies Program Offices, associate contractors and participating Government Agency responsibilities in support of the Interface Control Program and the conduct of interface management/control through the IMBs, and ICWGs.
G-33 Configuration Management
This guide clearly defines the purpose, goals, and objectives of an IBR. It also describes the attributes of an effective IBR and discusses a baseline review process that will lead to a better understanding of program risks. It provides a common definition and framework for the IBR Process. This process harmonizes, and to the extent possible, unifies the management objectives for all PMs. The IBR Process enables managers to effectively utilize the project Performance Measurement Baseline (PMB) to assess performance, and to better understand inherent risks. The IBR Process should continue throughout the life of a project.
G-47 Systems Engineering
Assist CM and engineering personnel in the implementation and coordination of CM unique procedures and disciplines of Configuration Identification, Change Control, Status Accounting and Audits.
G-33 Configuration Management
This document summarizes types of heat sinks and considerations in relation to the general requirements of aircraft heat sources, and it provides information to achieve efficient utilization and management of these heat sinks. In this document, a heat sink is defined as a body or substance used for removal of the heat generated by thermodynamic processes. This document provides general data about airborne heat sources, heat sinks, and modes of heat transfer. The document also discusses approaches to control the use of heat sinks and techniques for analysis and verification of heat sink management. The heat sinks are for aircraft operating at subsonic and supersonic speeds.
AC-9 Aircraft Environmental Systems Committee
This Bulletin provides a comprehensive list of Terms and Definitions used in or related to TechAmerica prepared standards/documents. The information in these listings was extracted from standards and documents prepared by the Systems Engineering (G47), Configuration Management (G33), Life Cycle Logistics Supportability and Enterprise Information Management Interoperability Committees along with other pertinent international, industry and government standards. It is intended that this bulletin be used as a resource to help with harmonization of terms and definitions across standards. One should be cognizant of the release date of this Bulletin and understand that updates to the included standards and handbooks after this Bulletin was released may affect its accuracy.
G-47 Systems Engineering
This document provides a description of a process for development of fly-by-wire actuation systems. Included are (1) the development of requirements for the servo-actuator hardware and the electronics hardware and software, (2) actuator and servo-electronics interface definitions and, (3) the required communications and interactions between the servo-actuator and the servo-electronics designers.
A-6A3 Flight Control and Vehicle Management Systems Cmt
The tests are static in nature to minimize complexity and cost of required testing facilities. As far as practical, applied static loads should take into account the combined static and dynamic loads anticipated in service. It is intended that tests shall be non-destructive in nature and not result in damage unless ultimate load conditions are employed. Test equipment and methods of testing described are not meant to be restrictive. Alternate equivalent methods to accomplish the desired results may be employed. In selected cases, tests may be repeated under ultimate load conditions when required for substantiation of analytical data. If this becomes necessary, the parts deformed may be removed and replaced prior to the retest.
AGE-2 Air Cargo
This SAE Standard covers the mechanical and material requirements for inch-series steel bolts, screws, studs, screws for sems1, and U-bolts2 in sizes to 1-1/2 in. inclusive. The term “stud” as referred to herein applies to a cylindrical rod of moderate length threaded on either one or both ends or throughout its entire length. It does not apply to headed, collared, or similar products which are more closely characterized by requirements shown herein for bolts. The mechanical properties included in Table 1 were compiled at an ambient temperature of approximately 20 °C (68 °F). These properties are valid within a temperature range which depends upon the material grade used and thermal and mechanical processing. Other properties such as fatigue behavior, corrosion resistance, impact properties, etc., are beyond the scope of this document and responsibility for ensuring the acceptability of the product for applications where conditions warrant consideration of these other properties shall
Fasteners Committee
This Information Report contains a definition of road vehicle hands-free operation. This definition applies to driver inputs to a wireless communications device used for person-to-person wireless communications while driving. This report applies to both original equipment manufacturers’ and aftermarket devices. The definition does not apply to outputs, e.g., visual or haptic feedback, from a communication system or device, regardless of the modality of human-machine interface. It also does not apply to parallel or redundant manual control operating modes.
Driver Vehicle Interface (DVI) Committee
This SAE Aerospace Standard (AS) covers the design, fabrication, performance, and testing requirements for general-purpose, base-restrained, containers requiring airworthiness approval for installation/use in aircraft lower deck compartments. See 10.1 and 10.2.
AGE-2 Air Cargo
This SAE Aerospace Recommended Practice (ARP) describes the design conditions under which tests should be conducted to demonstrate satisfactory performance of a flight critical servo-actuator under the maximum allowable particulate contamination in the associated airplane hydraulic system. Additionally, this document also describes the recommended tests and the required acceptance criteria.
A-6B1 Hydraulic Servo Actuation Committee
This Aerospace Information Report (AIR) is presented in two parts. The first part is simply a summarization of design factors that must be considered in establishing vehicle specifications and design characteristics. The second part refers particularly to the performance characteristics of an aircraft tow tractor. Some definitions, formulas, data, and an example are provided mainly for assisting the specifying engineers of potential buyers and users of aircraft tow tractors in the evaluation and comparison of their requirements with the performance capabilities of the various tow tractors offered by the tow tractor manufacturers. Although the design engineers could also use the formulas and data in their calculations of the performance specifications of aircraft tow tractors, this AIR is not intended to provide the methods and all data necessary for detailed calculations and design of an aircraft tow tractor.
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Aerospace Recommended Practice (ARP) describes a two-pole electric connector for use in battery powered ground support equipment, i.e., traction batteries. Alternatively, the connector can have two or more auxiliary contacts for auxiliary circuits. A handle may be added as an option to assist in connecting and disconnecting.
AGE-3 Aircraft Ground Support Equipment Committee
This document provides information, guidelines, and practices for the application, use, and administration of two-dimensional and three-dimensional droplet impingement and ice accretion computer codes. The codes provide computational simulations of inflight icing that predict droplet trajectory, water loading, and ice accretion on aircraft components. These ice accretion characteristics are used during the aircraft design and certification process.
AC-9C Aircraft Icing Technology Committee
The aircraft landing gear is a complex multi-degree of freedom dynamic system, and may encounter vibration or dynamic response problems induced by braking action. The vibratory modes can be induced by brake and tire-ground frictional characteristics, antiskid operation, brake design features, landing gear design features, and tire characteristics. The impact of this vibration can range from catastrophic failure of critical system components or entire landing gears, to fatigue of small components, to passenger annoyance. It is therefore important that the vibration is assessed during the design concept phase, and verified during the development and testing phases of the system hardware. This SAE Aerospace Information Report (AIR) has been prepared by a panel of the A-5A Subcommittee to present an overview of the landing gear problems associated with aircraft braking system dynamics, and the approaches to the identification, diagnosis, and solution of these problems. All pertinent system
A-5A Wheels, Brakes and Skid Controls Committee
This SAE Aerospace Information Report (AIR) addresses the following: 1 Captures previous experience and lessons learned in the application of PM. 2 Tabulates public-domain applications, and several representative examples discussed in detail. 3 Notes relative merits and barriers to implementation. The document does not contain technical details of probabilistic methods, benchmarking of specific approaches or legal aspects. These subjects are covered in other AIRs, referenced in Section 2 and prepared by the Probabilistic Methods Committee of the G-11 Reliability, Maintainability, Supportability and Logistics (RMSL) Division of SAE.
G-11 Probabilistic Methods and Uncertainty Quantification
This SAE Recommended Practice defines an architecture, including operating modes, in which an advanced driver interface system and related software exist. It also provides reference to a set of Federal Highway Administration approved guidelines for human factors characteristics of such systems and related software.
Truck and Bus Electrical * Electronic Steering Committee
This document describes a standard method to collect and report dielectric data for the purpose of monitoring or studying the cure of composites.
AMS P17 Polymer Matrix Composites Committee
This SAE Aerospace Information Report (AIR) has been prepared by a panel of the SAE A-5A Committee and is presented to document the design approaches and service experience from various applications of antiskid systems. This experience includes commercial and military applications.
A-5A Wheels, Brakes and Skid Controls Committee
AIR 4065, "Propeller/Propfan In-Flight Thrust Determination" addresses steady state propeller thrust as applied to aircraft which are usually powered by gas turbine engines. It includes theory, examples and methods which have been used. Specifically two methods are discussed, the "J" or traditional J,Cp,Ct, η method including the SBAC variation and a new method we call the "Theta" method which is dependent on knowing blade angle, power/torque and flight Mach number. Implementation guidelines are offered as well as overall approaches to flight testing. Appendices include expansions on theory and testing as well as examples.
E-33 In Flight Propulsion Measurement Committee
This Handbook has been prepared by the Ring Implementation Task Group of the SAE AS-2 Committee, and is intended to support AS4075 by providing explanation of the standard itself and guidance on its use. The principal objective in the preparation of a standard is to provide a statement of operational and performance requirements, and an unambiguous definition of the functions to be realized in any implementation, primarily from the view point of interoperability. While efforts have been made within the AS4075 standard to provide a readable general description of the HSRB, detailed explanations, rationale and guidance to the use are incompatible with the purpose and, indeed, the format of a standard. Accordingly, this Handbook contains a paragraph-by-paragraph explanation of the main sections of the standard, and a discussion of application and implementation issues.
AS-1A Avionic Networks Committee
The purpose of this document is to relate areas where carbon brake technology may differ from traditional steel brake technology in design and performance. Carbon brakes have been used on military aircraft for many years and are now frequently used on newly commercial developed aircraft. This document presents some of the lessons learned.
A-5A Wheels, Brakes and Skid Controls Committee
This Aerospace Information Report (AIR) addresses the subject of aircraft inlet-swirl distortion. A structured methodology for characterizing steady-state swirl distortion in terms of swirl descriptors and for correlating the swirl descriptors with loss in stability pressure ratio is presented. The methodology is to be considered in conjunction with other SAE inlet distortion methodologies. In particular, the combined effects of swirl and total-pressure distortion on stability margin are considered. However, dynamic swirl, i.e., time-variant swirl, is not considered. The implementation of the swirl assessment methodology is shown through both computational and experimental examples. Different types of swirl distortion encountered in various engine installations and operations are described, and case studies which highlight the impact of swirl on engine stability are provided. Supplemental material is included in the appendices. This AIR is issued to bring together information and ideas
S-16 Turbine Engine Inlet Flow Distortion Committee
This SAE Recommended Practice describes a method to be used for the static deployment of airbag module assemblies. The results obtained from the deployment tests will be used to verify compliance with design requirements and/or specifications, and for other engineering purposes such as module performance comparisons, and/or CAE input or validation. The purpose for this procedure is to describe recommended test methods to ensure, to the extent possible, reliable and reproducible test results for driver airbag modules, passenger airbag modules, or other airbag modules (e.g., side airbags, roof rail airbags, knee bolster airbags, etc.). Performance limits or acceptance criteria are not established as they are typically defined based on specific vehicle design requirements and/or manufacturer specifications. It is intended to be a general procedure for repetitive testing and suggests only general guidelines for the safe conduct of tests and reliable data correlation.
Inflatable Restraints Committee
The test procedure applies to the refueling manifold system connecting the receiver aircraft fuel tanks to the refueling source fuel pump(s) for both ground and aerial refueling. The test procedure is intended to verify that the limit value for surge pressure specified for the receiver fuel system is not exceeded when refueling from a refueling source which meets the requirements of AS1284 (reference 2). This recommended practice is not directly applicable to surge pressure developed during operation of an aircraft fuel system, such as initiating or stopping engine fuel feed or fuel transfer within an aircraft, or the pressure surge produced when the fuel pumps are first started to fill an empty fuel manifold.
AE-5A Aerospace Fuel, Inerting and Lubrication Sys Committee
This SAE Aerospace Recommended Practice (ARP) provides recommended definitions for terms commonly used in aircraft inflight icing system design and analysis, research, and operations. Some general thermodynamic terms are included that are frequently used in icing analysis, but this document is not meant to be an inclusive list of such terms.
AC-9C Aircraft Icing Technology Committee
This recommended practice applies to vibration monitoring systems for rotorcraft and fixed-wing drive trains, airframes, propulsion systems, electric power generators, and flight control systems. It addresses all aspects of metrics, including what to measure, how to measure, and how to evaluate the results.
HM-1 Integrated Vehicle Health Management Committee
The Environmental Control Analysis SYstem (EASY) computer program is summarized in this report. Development of this computer program initially was sponsored by the U.S. Air Force Flight Dynamics Laboratory. (See References 1, 2, 3, and 4.) It provides techniques for determination of steady state and dynamic (transient) ECS performance, and of control system stability; and for synthesis of optimal ECS control systems. The program is available from the U.S. Air Force, or as a proprietary commercial version. General uses of a transient analysis computer program for ECS design and development, and general features of EASY relative to these uses, are presented. This report summarizes the nine analysis options of EASY, EASY program organization for analyzing ECS, data input to the program and resulting data output, and a discussion of EASY limitations. Appendices provide general definitions for dynamic analysis, and samples of input and output for EASY.
AC-9 Aircraft Environmental Systems Committee
This SAE Aerospace Information Report (AIR) contains information on the thermal design requirements of airborne avionic systems used in military airborne applications. Methods are explored which are commonly used to provide thermal control of avionic systems. Both air and liquid cooled systems are discussed.
AC-9 Aircraft Environmental Systems Committee
This document establishes the requirements for technical content and format of hydraulic system diagrams. This document does not establish configuration requirements, material, or performance requirements for any system or component identified herein.
Ship Fluid Systems Committee
The LRMS is intended to provide a practical approach to standardization for location referencing within a mixed data set environment, i.e., where more than one kind of spatial data set exists, and where spatial references between these data sets must be made. Although some ITS applications in local areas may be satisfied by having one common data set— for which location references may be implemented in any number of ways— many ITS applications will have broad interoperability requirements within the nation or a region. For example, a vehicle driven from California to Florida in the U.S. should be able to receive and understand spatial references for traffic information or routing instructions throughout the trip. Similarly, information sent from a vehicle to a central site should be understood in any city regardless of the kinds of data sets in use, whether they are public or private, or how locations are referenced internally to particular data sets. The LRMS can be applied to ITS
ITS Council
The scope of this bulletin is to provide guidance on the use of current and future technologies for the electronic interchange of CM data.
G-33 Configuration Management
This SAE Aerospace Information Report (AIR) discusses the nature of landing gear stability, describes many common landing gear stability problems, and suggests approaches and methods for solving or avoiding them.
A-5B Gears, Struts and Couplings Committee
This SAE Aerospace Information Report (AIR) covers, and is restricted to, hands-on servicing/ maintenance of industrial lead acid batteries used solely for motive power and exclusively for ground support equipment (GSE). It does not address or pertain to automotive-type SLI (starting-lighting-ignition) batteries or any other types of batteries (such as nickel-cadmium, zinc, or lithium batteries) which may be on-board airport GSE for either motive power or auxiliary uses. Similarly, the battery servicing and charging facilities described herein are those intended exclusively for industrial lead acid batteries.
AGE-3 Aircraft Ground Support Equipment Committee
The recommendations of this SAE Aerospace Recommended Practice (ARP) for aircraft compartment automatic temperature control systems are primarily intended to be applicable to occupied or unoccupied compartments of civil and military aircraft.
AC-9 Aircraft Environmental Systems Committee
This document discusses a recommended new approach to integrate probabilistic methodologies with design practices, procedures, and software codes currently being used. In addition to complementing design methods currently in use, this new procedure will permit the designer to quantify the amount of conservatism that exists for a particular design due to the large amount of additional information which is provided to the designer. This additional information will allow the designer to make better decisions when faced with tradeoffs between cost, reliability, performance, and weight. Although the methodologies described herein can be used heavily in the design process, their applicability is much more encompassing. They can be used from product concept to customer delivery.
G-11 Probabilistic Methods and Uncertainty Quantification
Items per page:
1 – 50 of 212269