Search
Advanced Search
of the following are true

Results

Items (208,252)
The scope of this SAE Recommended Practice is limited to cranes mounted on a fixed platform lifting loads from a vessel alongside. The size of the vessel is assumed not to exceed that of a work boat as defined in 3.14
Cranes and Lifting Devices Committee
This SAE Aerospace Information Report (AIR) is a process verification guide for evaluating implementation of key factors in repair of fiber reinforced composite bonded parts or assemblies in a repair shop, hangar, or on-wing environment. This guide is to be used in conjunction with a regulatory approved and substantiated repair and is intended to promote consistency and reliability
AMS CACRC Commercial Aircraft Composite Repair Committee
The scope of this SAE Information Report is limited to a lift crane mounted on a fixed or floating platform, lifting loads from a vessel alongside. The size of the vessel is assumed not to exceed that of a workboat as defined in 3.15
Cranes and Lifting Devices Committee
This specification covers a copper-nickel-tin alloy in the form of castings, made using the investment process unless sand or centrifugal processes are agreed upon by the purchaser (see 8.5
AMS D Nonferrous Alloys Committee
This specification covers pyrometric requirements for equipment used for the thermal processing of metallic materials. Specifically, it covers temperature sensors, instrumentation, thermal processing equipment, correction factors and instrument offsets, system accuracy tests, and temperature uniformity surveys. These are necessary to ensure that parts or raw materials are heat treated in accordance with the applicable specification(s
AMS B Finishes Processes and Fluids Committee
AS22759 specification covers fluoropolymer-insulated single conductor electrical wires made with tin-coated, silver-coated, or nickel-coated conductors of copper or copper alloy as specified in the applicable detail specification. The fluoropolymer insulation may be polytetrafluoroethylene (PTFE), fluorinated ethylene propylene (FEP), polyvinylidene fluoride (PVF2), ethylene-tetrafluoroethylene copolymer (ETFE), or other Fluoropolymer resin. The fluoropolymer may be used alone or in combination with other insulation materials. These abbreviations shall be used herein. When a wire is referenced herein, it means an insulated conductor (see 7.7
AE-8D Wire and Cable Committee
This SAE Aerospace Recommended Practice (ARP) provides a framework for establishing methods and stakeholder responsibilities to ensure that seats with integrated electronic components (e.g., actuation system, reading light, inflatable restraint, in-flight entertainment equipment, etc.) meet the seat technical standard order (TSO) minimum performance standards (MPS). These agreements will allow seat suppliers to build and ship TSO-approved seats with integrated electronic components. The document presents the roles and accountabilities of the electronics manufacturer (EM), the seat supplier, and the TC/ATC/STC applicant/holder in the context of AC 21-49, Section 7.b (“Type Certification Using TSO-Approved Seat with Electronic Components Defined in TSO Design”). This document applies to all FAA seat TSOs C39( ), C127( ), etc. The document defines the roles and responsibilities of each party involved in the procurement of electronics, their integration on a TSO-approved seat, and the
Aircraft Seat Committee
This SAE Aerospace Recommended Practice (ARP) provides recommended use and installation procedures for bonded cable harness supports
AE-8A Elec Wiring and Fiber Optic Interconnect Sys Install
This specification covers a magnesium alloy in the form of sand castings
AMS D Nonferrous Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet and strip up to 0.187 inch (4.75 mm) thick, inclusive, and plate up to 4.000 inches (101.6 mm) thick, inclusive
AMS F Corrosion and Heat Resistant Alloys Committee
This slash sheet specifies the operational parameters and characteristics of a particular implementation of the SAE Linear, Token Passing Bus (LTPB) Interface Unit. This slash sheet defines the following: a The physical media interface: This slash sheet specifies the characteristics of the optical interface to the physical bus media. b The minimum and maximum timing requirements for operation of this implementation of the LTPB. c The data coding used to encode and decode the data for transmission. d The default values to be loaded into the timers of the LTPB interface at power-up prior to intervention by the host processor
AS-1A Avionic Networks Committee
The CDIF Family of Standards is primarily designed to be used as a description of a mechanism for transferring information between CASE tools. It facilitates a successful transfer when the authors of the importing and exporting tools have nothing in common except an agreement to conform to CDIF. The language that is defined for the Transfer Format also has applicability as a general language for Import/Export from repositories. The CDIF Integrated Meta-model defined for CASE also has applicability as the basis of standard definitions for use in repositories. The standards which form the complete family of CDIF Standards are documented in EIA/IS-106 CDIF - CASE Data Interchange Format - Overview. These standards cover the overall framework, the transfer format and the CDIF Integrated Meta-model. The diagram in Figure 1 depicts the various standards that comprise the CDIF Family of Standards. The shaded box depicts this Standard and its position in the CDIF Family of Standards. This
Systems Management Council
This SAE Aerospace Recommended Practice (ARP) describes three general types of Ground Support Equipment (GSE) battery chargers. The battery charger typically requiring up to 8 hours to recharge a 100% discharged battery, hereafter called “Conventional Charger.” A charger, hereafter called “Opportunity Charger,” which has the ability to charge at a slightly faster rate than a conventional charger. A charger, hereafter called “Fast Charger,” which has the ability to charge at a much faster rate than a conventional charger. Recommendations that apply to all types will refer generically to “charger
AGE-3 Aircraft Ground Support Equipment Committee
The emphasis in this standard is the development of data word and message formats for AS15531 or MIL-STD-1553 data bus applications. This standard is intended as a guide for the designer to identify standard data words and messages for use in avionics systems and subsystems. These standard words and messages, as well as the documentation format for interface control document (ICD) sheets, provide the basis for defining 15531/1553 systems. Also provided in this standard is the method for developing additional data word formats and messages that may be required by a particular system but are not covered by the formats provided herein. It is essential that any new word formats or message formats that are developed for a 15531/1553 application follow the fundamental guidelines established in this standard in order to ease future standardization of these words and messages. The standard word formats presented represent a composite result of studies conducted by the U.S. Army, Navy, and Air
AS-1A Avionic Networks Committee
AGE-4 Packaging, Handling and Transportability Committee
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This AS provides suitable test methods for measuring the dynamic coefficient of friction ("slip resistance" or "sliding friction") of aircraft flooring and walkway surfaces in accordance with 14 CFR and EASA CS 25.793 and 25.810(c). § 25.793 specifies the areas which are likely to become wet in service must have slip-resistant properties, and § 25.810 specifies an escape route must be established from each overwing emergency exit that is covered with a slip-resistant surface
null, null
The tow vehicle should be designed for towbarless movement of aircraft on the ground. The design will ensure that the unit will safely secure the aircraft nose landing gear within the coupling system for any operational mode
AGE-3 Aircraft Ground Support Equipment Committee
The purpose of this SAE Aerospace Information Report (AIR) is to provide management, designers, and operators with information to assist them to decide what type of power train monitoring they desire. This document is to provide assistance in optimizing system complexity, performance and cost effectiveness. This document covers all power train elements from the point at which aircraft propulsion energy in a turbine or reciprocating engine is converted via a gear train to mechanical energy for propulsion purposes. The document covers aircraft engine driven transmission and gearbox components, their interfaces, drivetrain shafting, drive shaft hanger bearings, and associated rotating accessories, propellers, and rotor systems as shown in Figure 1. For guidance on monitoring additional engine components not addressed, herein (e.g., main shaft bearings and compressor/turbine rotors), refer to ARP1839. This document addresses rotary and fixed wing applications for rotor, turboprop, turbofan
E-32 Aerospace Propulsion Systems Health Management
This SAE Aerospace Information Report (AIR) discusses the terminology, types, method of manufacture and chemistry of the fine wire meshes used for filtration of hydraulic, lubrication fuel systems, and similar applications. Information contained herein may be used for quality assurance testing to insure that a high performance filter grade wire mesh is acceptable for use in an aerospace application
A-6C1 Fluids and Contamination Control Committee
This SAE Aerospace Recommended Practice (ARP) discusses design philosophy, system and equipment requirements, environmental conditions, and design considerations for rotorcraft environmental control systems (ECS). The rotorcraft ECS comprises that arrangement of equipment, controls, and indicators which supply and distribute dehumidified conditioned air for ventilation, cooling and heating of the occupied compartments, and cooling of the avionics. The principal features of the system are: a A controlled fresh air supply b A means for cooling (air or vapor cycle units and heat exchangers) c A means for removing excess moisture from the air supply d A means for heating e A temperature control system f A conditioned air distribution system The ARP is applicable to both civil and military rotorcraft where an ECS is specified; however, certain requirements peculiar to military applications—such as nuclear, biological, and chemical (NBC) protection—are not covered. The integration of NBC
AC-9 Aircraft Environmental Systems Committee
This specification covers the detail requirements for control transformer synchro, type 16CTB4b, 90 volt, 400 cycle
AE-7A Generators and Controls Motors and Magnetic Devices
This Common Interface Control Plan (CICP) establishes the methodology for developing, controlling, and managing the technical interfaces between and within systems. An interface defines the interaction at a defined point between entities to achieve a combined system capability. A common interface defines the shared interaction between multiple systems on either side of the interface. The document is not intended to directly control any other aspects of program management, such as matters of contractual, financial, or those of an intellectual property rights nature. Members in the interface control process include: procurement authorities, design authorities, and other related agencies as defined in the specific System Interface Control Plan (SICP). For the purposes of this plan, only the terms Procuring Organization and Producing Organization will be used. This plan is predicated upon formal agreements between participating organizations that provide: 1 Authority to participate in
AS-1B Aircraft Store Integration Committee
This document defines the requirements for heavy-duty polytetrafluoroethylene (PTFE) lined, para-aramid reinforced, hose assembly suitable for use in 275 °F, 3,000 psi aircraft systems where rapid rate pulsing and torsional/longitudinal flexing may occur in addition to normal hydraulic system loading. Size -16 and -20 are limited to +225 °F service
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
Blade trackers measure: (a) rotor blade height and (b) lead-lag for use in a Rotor Track and Balance (RT&B) function in a Health and Usage Monitoring System (HUMS). HUMS is a generic term for a system used to measure, monitor, process, and store information relating to the functioning and usage of an aircraft's on-board primary systems, including the engine(s
HM-1 Integrated Vehicle Health Management Committee
This SAE Aerospace Recommended Practice (ARP) describes a class of digital computer programs for use by organizations other than the engine supplier for reduction of engine test data relating to the interface of the engine in the airframe or test facility. This ARP also is intended as a guide for the preparation of such computer programs
S-15 Gas Turbine Perf Simulation Nomenclature and Interfaces
This ARP specifies the recommended methods of handling silver coated conductors and shield, by the conductor fabricator, wireinsulator, distributors, harness or assembly houses, and OEM’s. Red Plague mitigation depends upon each link in the chain of supply handling the wire and cable properly
AE-8D Wire and Cable Committee
SCOPE IS UNAVAILABLE
AE-8C2 Terminating Devices and Tooling Committee
Items per page:
1 – 50 of 208252