Your Selections

Marri, Vidya
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Optimal Pressure Relief Groove Geometry for Improved NVH Performance of Variable Displacement Oil Pumps

Ford Motor Company-Abdelkrim Zouani, Vidya Marri
Published 2019-06-05 by SAE International in United States
Variable Displacement Oil Pump (VDOP) is becoming the design of choice for engine friction reduction and fuel economy improvement. Unfortunately, this pump creates excessive pressure ripples, at the outlet port during oil pump shaft rotation, causing oscillating forces within the lubrication system and leading to the generation of objectionable tonal noises and vibrations. In order to minimize the level of noise, different vanes spacing and porting geometries are used. Moreover, an oil pressure relief groove can be added, at the onset of the high pressure port, to achieve this goal.This paper presents an optimization method to identify the best geometry of the oil pressure relief groove. This method integrates adaptive meshing, 3D CFD simulation, Matlab routine and Genetic Algorithm based optimization. The genetic algorithm is used to create the required design space in order to perform a multi-objective optimization using a large number of parameterized groove geometries. Results of this optimization method are discussed and a design guideline for the oil pressure relief groove is disclosed.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Optimal Vanes Spacing for Improved NVH Performance of Variable Displacement Oil Pumps

Ford Motor Company-Abdelkrim Zouani, Gabriela Dziubinschi, Vidya Marri, Simon Antonov
Published 2017-03-28 by SAE International in United States
In modern automotive engines, Variable Displacement Oil Pump (VDOP) is becoming the pump of choice to enable reduction in friction and delivery of stringent fuel economy. However, this pump creates pressure ripples, at the outlet port during oil pump shaft rotation, causing oscillating forces within the system and leading to the generation of tonal noises and vibrations. In order to minimize the level of noise, different porting geometries and vane spacing are used.This paper describes an optimization method intended to identify the best possible spacing of the vanes in the conventional 7-vanes, 9-vanes and 11-vanes oil pumps. The method integrates a Matlab routine with the modeFRONTIERsoftware to create the required design space in order to perform a multi-objective optimization using a genetic algorithm. Results of this optimization method are discussed and a design guideline for the VDOP vane spacing is disclosed. Test data are included to validate the results of the optimization study.
This content contains downloadable datasets
Annotation ability available