Results
This Information Report provides a description of bleed-air pneumatic system elements and identifies parameters required to define the requirements for a detailed specification. Specific design requirements are dependent on the application and should be incorporated in a detailed specification.
This lab test procedure should be used when evaluating the combined corrosion and fatigue performance for a particular coating system, substrate, process and design. The test is intended to provide an A to B comparison of a proposed coil spring design versus an existing field validated coil spring when subjected to the combined effects of corrosion and fatigue. The corrosion mechanisms covered by this test include general, cosmetic and pitting corrosion. Fatigue testing covers the maximum design stress and/or stress range of the coil spring design (typically defined as excursion from jounce to rebound positions in a vehicle). The effects of gravel and heat are simulated by pre-conditioning the springs prior to fatigue testing. Time dependant corrosion mechanisms such as stress corrosion cracking are not addressed with this test.
This SAE Recommended Practice provides test methods and requirements to evaluate the suitability of plastic optical materials for possible use in discharge forward lighting (DFL) devices in motor vehicles. These materials are typically used for lenses and reflectors. Separate testing is required for each combination of material, industrial coating, DFL light source, and device focal length. The tests are intended to determine physical and optical characteristics of the materials and coatings. Performance expectations of finished assemblies, including plastic components, are to be based on tests for lighting devices, as specified in SAE Standards and Recommended Practices for motor vehicle lighting equipment. Optical components exposed to weathering should also be subject to SAE J576.
This SAE Standard references the performance and functional requirements of the International Electrotechnical Commission (IEC) and its U.S. member, the American National Standards Institute (ANSI). By referring to IEC/ANSI and its standards concerning light source (bulb) sockets, light source (lamp) holders, and gages, this document recognizes the need for harmonized standards world-wide for what are typically commodity items. Additional requirements are noted.
This SAE Recommended Practice (RP) provides test procedures for air braked trucks and truck-tractors used to tow single and multiple trailer combinations on highways. This RP is not intended for off-highway applications.
SAE J2552 provides limited, dimensional and general performance requirements for low pressure, field attachable, push-on hose and their mating hose fittings. The intended application is for fluid and pneumatic power used with petroleum base hydraulic fluids, lube oils, water glycols and air, within the temperature ranges listed in Table 1. The maximum working pressure is 1.7 MPa (see Table 2). For air applications the maximum working pressure is at 0.7 MPa. Hose and hose fittings are manufactured within certain dimensions with tolerance ranges in order to provide the proper gripping and sealing. SAE J2552 hose from one manufacturer may not be compatible with SAE J2552 hose fittings supplied by another manufacturer. It is the responsibility of the fabricator to always follow the manufacturers’ instructions for proper preparation and fabrication of hose assemblies. The fabricator shall consult the manufacturers’ written assembly instructions or the manufacturers directly before
This SAE information report applies to wire rope supported, latticed crane boom systems mounted on mobile construction type cranes for lift crane service.
This SAE Standard includes complete general and dimensional specifications for those types of filler and drain plugs (shown in Figures 1 to 7 and Tables 1 to 3) having straight threads which are commonly used with gaskets or seals in automotive and related industrial applications.
This SAE Recommended Practice covers a high-strength corrosion-resisting steel wire, uniform in mechanical properties, intended for the manufacture of springs and wire forms. It also covers processing requirements of springs and forms fabricated from this wire.
This SAE Standard includes couplings, hitches, and safety chains used in conjunction with all types of trailers or towed vehicles whose Gross Vehicle Weight Rating (GVWR) does not exceed 4540 kg (10 000 lb). This includes such types as utility, boat, camping, travel, and special purpose trailers which are normally towed by conventional passenger cars, light-duty commercial vehicles, light trucks, and multipurpose passenger vehicles. This document is intended primarily for ball-and-socket type of couplings and hitches. It should not be construed as a limitation to this type alone but should apply where appropriate to ring-and-pintle, clevis-and-pin, or any other draft means designed to serve this purpose.
This document will primarily address intrinsic reliability of electronic components for use in automotive electronics. Where practical, methods of extrinsic reliability detection and prevention will also be addressed. The current handbook primarily focuses on integrated circuit subjects, but can easily be adapted for use in discrete or passive device qualification with the generation of a list of failure mechanisms relevant to those components. Semiconductor device qualification is the main scope of the current handbook. Other procedures addressing extrinsic defects are particularly mentioned in the monitoring chapter. Striving for the target of Zero Defects in component manufacturing and product use it is strongly recommended to apply this handbook. If it gets adopted as a standard, the term “shall” will represent a binding requirement. This document does not relieve the supplier of the responsibility to assure that a product meets the complete set of its requirements.
This SAE Recommended Practice provides guidance for defining the requirements for evaluating hydraulic pumps and motors and for preparing detailed specifications for these components. The user can follow this document to set forth the pump and motor environmental and performance considerations, establish service life and reliability goals, and define specific evaluation tests for marine vehicle applications.
This SAE Standard provides a method to obtain consistent force-deflection data of finished (or unfinished, when specified) cushioned components of seats for off-road work machines as listed in SAE J1116. This data may be helpful in maintaining seat comfort characteristics and quality control. There is no intent to establish any acceptance criteria.
This SAE Recommended Practice incorporates a track-based test procedure that produces a representative value for vehicle top speed when operating on a level paved road with a fully charged battery.
This standard provides background information and a hydrogen fuel quality standard for commercial proton exchange membrane (PEM) fuel cell vehicles. This report also provides background information on how this standard was developed by the Hydrogen Quality Task Force (HQTF) of the Interface Working Group (IWG) of the SAE Fuel Cell Standards Committee.
The materials classified under this specification are: a Mastic vibration damping materials used to reduce the sound emanating from metal panels. b Mastic underbody coatings used to give protection and some vibration damping to motor vehicle underbodies, fenders, and other parts.
This SAE Standard covers general and performance specifications for hydraulic hose fittings of the styles, types, and classes defined in Section 3 and used in conjunction with nonmetallic flexible hoses for marine applications. This document does not ensure compatibility between manufacturers of hydraulic hose and hydraulic hose fittings. Compatibility is the responsibility of the hydraulic hose assembly manufacturer.
This SAE Standard outlines the requirements for a preformed thermosetting hose intended for use in heavy-duty vehicle engines, such as air cleaner to carburetor hose, where it is exposed to normal heat and splash of motor oil.
This SAE Recommended Practice establishes the minimum interface compatibility requirements for electric vehicle (EV) inductively coupled charging for North America. This part of the specification is applicable to manually connected inductive charging for Levels 1 and 2 power transfer. Requirements for Level 3 compatibility are contained in Appendix B. Recommended software interface messaging requirements are contained in Appendix A. This type of inductively coupled charging is generally intended for transferring power at frequencies significantly higher than power line frequencies. This part of the specification is not applicable to inductive coupling schemes that employ automatic connection methods or that are intended for transferring power at power line frequencies.
These Protocols can be used for all forms of motorsports; however, only certain combinations of Green Racing Elements will result in motorsport competitions that are recognized as Green Racing events. As new information, fuels and technologies emerge, addendums or new protocols will be developed. The SAE International (SAE) Motorsports Engineering Activity is also an invaluable source of reference materials and ongoing technical advice providing access to the constantly evolving set of best safety and operational practices for current and emerging technologies. This is especially true with regard to high voltage safety and the adoption of other advanced propulsion and fuel system technologies.
This SAE Recommended Practice covers the design and application of primary on-board wiring distribution system harnesses to road vehicles. This document applies to any wiring system which contains one or more circuits operating between 50 V DC or AC RMS and 600 V DC or AC RMS excluding automotive ignition cable.
This report relates to recommendations and specifications governing the classification, composition, test procedures, and properties of printed circuits commonly used to replace cable in automotive low voltage systems. It is not applicable to miniature circuits for solid state devices, high impedance or high voltage functions.
This SAE Recommended Practice applies to any internal combustion engine which can utilize SAE No. 6 thru SAE No. 00 size flywheel housing. It provides instructions for correcting flywheel housing bore runout readings which are influenced by crankshaft bearing clearance. Limits for bore and face runout are specified in the various SAE Standards and Recommended Practices covering flywheels and flywheel housings.
This SAE Part Standard covers selected inch dimensioned washers and lock washers manufactured in accordance with American Society for Mechanical Engineers dimensional standards. This SAE standard covers material most often used in ship systems and equipment but its use may be applied wherever washers of the covered materials are used. This standard permits the washers to be identified and ordered by a part identification number (PIN) as defined in this standard. Appendix A provides a means of establishing PINs for non-standard flat washers. Appendix B establishes standards for lock plates and tab lock washers often used in Navy designs. Appendix C identifies other military and non-government standards for flat washers, helical and toothed lock washers. It identifies the materials covered by each standard with a comparison of those dimensions with those SAE J2655 washers.
This SAE Standard encompasses connectors that form the electrical interface(s) between the heavy duty lighting device(s) and the truck and truck/trailer wiring harness system. This document provides design and performance requirements based upon the mechanical, electrical and environmental conditions and covers applications of connectors for direct current electrical systems of 24 V nominal or less in heavy-duty signaling and marking devices. This standard excludes forward lighting devices (i.e., fog lamps) but includes the following list of lamps: Stop Lamps Tail Lamps Turn Signal/Hazard Warning Lamps Side Marker Lamps Clearance Lamps Identification Lamps Back Up Lamps Side-Turn Signal Lamps Work Lamps License Lamps Chassis Component Status (ABS) Lamps Identification Lamps
This SAE Recommended Practice is intended to establish guidelines for conducting passenger car roll-over tests so that data obtained by various test facilities may be more readily compared. A description is provided of the facilities and procedures for a curved rail-ramp technique, which has been found to be successful in producing roll-overs. Techniques and instrumentation for the study and evaluation of vehicle structure effects and occupant movement resulting from roll-overs produced by the curved rail-ramp system are also specified. The curved rail-ramp procedure has been evolved from laboratory and field studies and tests which have sought to establish procedures which would provide realistic simulations of roll-over accidents without collision, and which would be reproducible among laboratories and between different types of passenger cars. The original issue of SAE J857 described ground level and hill roll-over techniques. However, it was found that these procedures were not
Items per page:
50
1 – 50 of 211947