The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

Ma, Liqun
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Novel Heating-Coating Hybrid Strategy for Wind Turbine Icing Mitigation

Iowa State University-Linyue Gao, Liqun Ma, Yang Liu, Hui Hu
Published 2019-06-10 by SAE International in United States
The electro-thermal method is most commonly used for wind turbine anti-/de-icing. The upmost drawback of such systems is the high power consumption. In the present study, we proposed to use a durable slippery liquid-infused porous surface (SLIPS) to effectively reduce the power requirement of the heating element during the anti-/de-icing process. The explorative study was conducted in the Icing Research Tunnel at Iowa State University (ISU-IRT) with a DU91-W2-250 wind turbine blade model exposed under severe icing conditions. During the experiments, while a high-speed imaging system was used to record the dynamic ice accretion process, an infrared (IR) thermal imaging system was also utilized to achieve the simultaneous surface temperature measurements over the test model. In comparison to the traditional electrical heating strategies to brutally heat massive area of entire turbine blades, a novel heating-coating hybrid strategy, i.e., combining a leading-edge (LE) heating element to cover the first 30% of the chord length (C) along with using SLIPS to coat entire blade surface, was found to be able to keep the entire blade surface completely…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

An Experimental Investigation of a Wind-Driven Water Droplet over the Slippery Liquid Infused Porous Surface

Iowa State University-Liqun Ma, Hui Hu
Published 2019-06-10 by SAE International in United States
The promising anti-icing performance of the slippery liquid infused porous surface (SLIPS) has been recently demonstrated for various engineering applications. The runback icing for aircraft and wind turbines could be effectively mitigated considering the timely removal of water droplet by the wind shearing force due to the low adhesion on the SLIPS. In this study, the flow field both inside and around the wind-driven droplet over the SLIPS was experimentally investigated by using Particle Image Velocimetry (PIV) technique. Previous studies majorly focus on the internal flow pattern before the droplet incipient motion. In this study, the flow field inside a moving droplet was firstly investigated. As a result of the low surface adhesion of the SLIPS, droplet oscillations were eliminated and the droplet internal flow field could be corrected from the optical distortion. Besides the discussion on the wind speed, the droplet viscosity was also studied by varying the water concentration of the glycerin-water solution. It was found that the internal circulation was highly related with the droplet viscosity. The inner circulations within the water…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

An Experimental Study to Evaluate the Droplet Impinging Erosion Characteristics of an Icephobic, Elastic Soft Surface

Iowa State University-Liqun Ma, Zichen Zhang, Yang Liu, Hui Hu
Published 2019-06-10 by SAE International in United States
Elastic soft material/surface, such as Polydimethylsiloxane (PDMS), is a perspective, useful and low-cost hydrophobic and icephobic coating. While it has been reported to have good mechanical durability, its erosion durability under the high impacting of water droplets pertinent to aircraft inflight icing phenomena has not been explored. In this study, the droplet imping erosion characteristics of an icephobic PDMS surface/material is evaluated systematically upon the dynamic impinging of water droplets at different impact velocities (~ up to 75m/s), in comparison with other state-of-the-art icephobic materials/surfaces, such as superhydrophobic surface (SHS) and slippery liquid-infused porous surface (SLIPS). Surprisingly, the contact angle (CA) of the elastic PDMS is shown to have an over 20° increase (from 105° to 128°), which represents better hydrophobicity, after the erosion test which is mainly contributed to the higher roughness of the eroded PDMS surface. As for the icephobicity evaluation, intact PDMS was found to has ultra-low ice adhesion (~8 kPa), in comparison with SHS (i.e., ~100kPa) and SLIPS (i.e., ~35kPa). PDMS also shows outstandingly stable ice adhesion during the erosion test…
Annotation ability available