The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

Lin, Chunjing
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Evaluation of short circuit safety of NCM/C Li-ion power battery under different state of health

CATARC-Chunjing Lin, Fang Wang, Bin Fan
Harbin Institute of Technology-Peixia Yang
  • Technical Paper
  • 2020-01-0454
To be published on 2020-04-14 by SAE International in United States
With the increasing frequency of fire incidents of electric vehicles, the safety of power batteries has attracted more and more attention. At present, the research on the safety of power batteries is mainly focused on fresh batteries. As the state of health of batteries deepens, how the safety of the battery evolves is not clear enough so far. This paper analyzes the short circuit safety of a NCM/C rectangular battery under different cycle numbers. The results show that with the increase of the cycle numbers, the maximum short-circuit current of the battery increases slightly. When the cycle number is less than 800, the maximum temperature of the battery is below 130 °C. The main failure feature of the battery is bulging in volume or opening of the explosion-proof valve. However, when the cycle number reaches 1000, the battery goes into thermal runaway. The explosion-proof valve opens, and a large amount of smoke is sprayed, and the surface temperature of the battery reaches 350 °C.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Simulation and Parametric Analysis of Battery Thermal Management System Using Phase Change Material

CATARC-Chunjing Lin, Yuhan Sun
Tongji University-Zhao Li, Sichuan Xu
  • Technical Paper
  • 2020-01-0866
To be published on 2020-04-14 by SAE International in United States
The thermophysical parameters and amount of composite phase change materials (PCMs) have a decisive influence on the thermal control effects of thermal management systems (TMSs). At the same time, the various thermophysical parameters of the composite PCM are interrelated. For example, increasing the thermal conductivity is bound to mean a decrease in the latent heat of phase change, so a balance needs to be achieved between these parameters. In this paper, a prismatic LiFePO4 battery cell cooled by composite PCM is comprehensively analyzed by changing the phase change temperature, thermal conductivity and amount of composite PCM. The influence of the composite PCM parameters on the cooling and temperature homogenization effect of the TMS is analyzed. which can give useful guide to the preparation of composite PCMs and design of the heat transfer enhancement methods for TMSs.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Thermal Uniformity of Pouch-Type Lithium Ion Batteries with NCM Cathode Materials under Different Operating Conditions

CATARC-Chunjing Lin, Yifan Liu, Jinjie Zhang, Liqiong Han, Bin Fan, Yunjun Luo, Fang Wang
Published 2019-04-02 by SAE International in United States
With the advantages of flexible size and high energy density etc., pouch-type lithium ion battery cells with large capacity have been found more and more applications in electric vehicles. For these large-scale battery cells, thermal uniformity is vital for their safety and cycle life. To be specific, temperature gradients are expected to cause different degradation rates of active materials in different areas, which is possible to cause early failure or even fire and explosion of the battery cell. Thus, it is necessary to illustrate the batterie’s thermal uniformity in detail under different operating conditions. This work investigated the thermal uniformity of two 36 Ah pouch-type NCM/C battery cells with different sizes using both the thermal imaging method and thermoelectric effect method with K-type thermocouples. Experimental results show that there is an obvious temperature gradient on the surface of the pouch-type battery cell. The temperature of the positive electrode is significantly higher than other regions, which denotes that cooling the electrodes could a possible and effective solution for battery thermal management system. The current rare and…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Numerical Analysis and Optimization Design of a Centrifugal Compressor’s Volute for PEM Fuel Cell Vehicle

CATARC-Chunjing Lin
Tongji University-Yuemeng Zhang, Sichuan Xu, Qing Zhan
Published 2019-04-02 by SAE International in United States
Centrifugal compressors used in polymer electrolyte membrane fuel cell systems are different from turbochargers in internal combustion engines, because they are required to work at high speed, low mass flow rate, narrow range which nears surge boundaries. In order to meet these requirements, a centrifugal compressor’s volute is designed, analyzed and optimized on its cross-section area, shape of volute tongue and tapered angle of exit. The numerical results show that surge boundary of the compressor is influenced by spiral area significantly and that volute tongue has a major impact on aerodynamic performances at high mass flow rates.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

An Adaptive Neuro-Fuzzy Inference System (ANFIS) Based Model for the Temperature Prediction of Lithium-Ion Power Batteries

SAE International Journal of Passenger Cars - Electronic and Electrical Systems

China Automotive Technology and Research Center Co., Ltd. (CATARC)-Bin Fan, Chunjing Lin, Fang Wang, Shiqiang Liu, Lei Liu
Tongji University-Sichuan Xu
  • Journal Article
  • 07-12-01-0001
Published 2018-08-14 by SAE International in United States
Li-ion batteries have been widely applied in the areas of personal electronic devices, stationary energy storage system and electric vehicles due to their high energy/power density, low self-discharge rate and long cycle life etc. For the better designs of both the battery cells and their thermal management systems, various numerical approaches have been proposed to investigate the thermal performance of power batteries. Without the requirement of detailed physical and thermal parameters of batteries, this article proposed a data-driven model using the adaptive neuro-fuzzy inference system (ANFIS) to predict the battery temperature with the inputs of ambient temperature, current and state of charge. Thermal response of a Li-ion battery module was experimentally evaluated under various conditions (i.e. ambient temperature of 0, 5, 10, 15 and 20 °C, and current rate of C/2, 1C and 2C) to acquire the necessary data sets for model development and validation. A Sugeno-type ANFIS model was tuned using the obtained data. The numbers of input membership functions (MFs) representing the three input parameters of this model are 1, 2, 3, respectively.…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Experimental Study on the Internal Resistance and Heat Generation Characteristics of Lithium Ion Power Battery with NCM/C Material System

SAE International Journal of Passenger Cars - Electronic and Electrical Systems

Beijing Institute of Technology-Jing Wang, Chuncheng Liu, Yuefeng Su, Shi Chen, Feng Wu
China Automotive Technology and Research Center Co., Ltd.-Shiqiang Liu, Chunjing Lin, Fang Wang
  • Journal Article
  • 07-11-02-0012
Published 2018-04-18 by SAE International in United States
Heat generation characteristics of lithium ion batteries are vital for both the optimization of the battery cells and thermal management system design of battery packs. Compared with other factors, internal resistance has great influence on the thermal behavior of Li-ion batteries. Focus on a 3 Ah pouch type battery cell with the NCM/C material system, this article quantitatively evaluates the battery heat generation behavior using an Extended Volume-Accelerating Rate Calorimeter in combination with a battery cycler. Also, internal resistances of the battery cell are measured using both the hybrid pulse power characteristic (HPPC) and electro-chemical impedance spectroscopy (EIS) methods. Experimental results show that the overall internal resistance obtained by the EIS method is close to the ohmic resistance measured by the HPPC method. Heat generation power of the battery cell is small during discharge processes lower than 0.5 C-rate. The curve of heat generation power vs. time shows a U-shaped characteristic that displays some symmetry when the current rate is high. Compared with the EIS method, internal resistances measured by the HPPC method have a…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Thermal Management of Power Batteries for Electric Vehicles Using Phase Change Materials: A Review

Tongji University-Dongchang Pan, Sichuan Xu, Chunjing Lin, Guofeng Chang
Published 2016-04-05 by SAE International in United States
As one of the most crucial components in electric vehicles, power batteries generate abundant heat during charging and discharging processes. Thermal management system (TMS), which is designed to keep the battery cells within an optimum temperature range and to maintain an even temperature distribution from cell to cell, is vital for the high efficiency, long calendar life and reliable safety of these power batteries. With the desirable features of low system complexity, light weight, high energy efficiency and good battery thermal uniformity, thermal management using composite phase change materials (PCMs) has drawn great attention in the past fifteen years. In the hope of supplying helpful guidelines for the design of the PCM-based TMSs, this work begins with the summarization of the most commonly applied heat transfer enhancement methods (i.e., the use of thermally conductive particles, metal fin, expanded graphite matrix and metal foam) for PCMs by different researchers. Newly developed TMS configurations such as the multi-layer PCMs and sandwiched ones are also discussed in detail. In addition, the hybrid TMS combining PCM cooling with air…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design and Thermal Analysis of a Passive Thermal Management System Using Composite Phase Change Material for Rectangular Power Batteries

SAE International Journal of Passenger Cars - Electronic and Electrical Systems

Tongji University-Chunjing Lin, Sichuan Xu, Zhao Li, Guofeng Chang
  • Journal Article
  • 2015-01-0254
Published 2015-04-14 by SAE International in United States
A passive thermal management system (TMS) using composite phase change material (PCM) for large-capacity, rectangular lithium-ion batteries is designed. A battery module consisting of six Li-ion cells connected in series was investigated as a basic unit. The passive TMS for the module has three configurations according to the contact area between cells and the composite PCM, i.e., surrounding, front-contacted and side-contacted schemes. Firstly, heat generation rate of the battery cell was calculated using the Bernardi equation based on experimentally measured heat source terms (i.e. the internal resistance and the entropy coefficient). Physical and thermal properties such as density, phase change temperature, latent heat and thermal conductivity of the composite PCM were also obtained by experimental methods. Thereafter, thermal response of the battery modules with the three TMS configurations was simulated using 3D finite element analysis (FEA) modeling in ANSYS Fluent. Simulation results show that, when PCM is adequate, surrounding and front-contacted schemes are better than the side-contacted scheme in battery temperature control. While when PCM is not adequate under continuous 3C charge-discharge cycle, front-contacted and…
Annotation ability available