Advanced Search
of the following are true


Items (207,327)
This SAE Aerospace Recommended Practice (ARP) provides recommendations for: The audit process in general A list of specific areas of attention to be audited Maintaining the test facility in such a manner that it meets audit requirements
EG-1E Gas Turbine Test Facilities and Equipment
This document provides background information, rationale, and data (both physical testing and computer simulations) used in defining the component test methods and similarity criteria described in SAE Aerospace Recommended Practice (ARP) 6330. ARP6330 defines multiple test methods used to assess the effect of seat back mounted IFE monitor changes on blunt trauma to the head and post-impact sharp edge generation. The data generated is based on seat and IFE components installed on type A-T (transport airplane) certified aircraft. While not within the scope of ARP6330, generated test data for the possible future development of surrogate target evaluation methods is also included
Aircraft Seat Committee
This standard defines the requirements used by the Plan owner to develop a DMSMS Management Plan, hereinafter referred to as the Plan. The requirement to develop a DMSMS Management Plan could come from a number of different sources, such as a contractual or customer requirement or a desire by the Plan owner to document their standard process. The process described in the Plan is intended to mitigate DMSMS risks and resolve DMSMS issues on ADHP equipment provided by the Plan owner. Development of a plan that conforms to the technical requirements detailed in Section 3 ensures that the Plan owner meets the requirement of a DMSMS, or obsolescence management plan, required by industry standards, government regulations, and/or other contractual flow-down requirements, such as: a EIA-STD-4899, Standard for Preparing an Electronic Components Management Plan b AS5553, Counterfeit Electronic Parts; Avoidance, Detection, Mitigation, and Disposition c DFARS 252.246-7007, Contractor Counterfeit
APMC Avionics Process Management
This SAE Aerospace Information Report (AIR) was written because of the growing interest in aircraft installed outdoor engine testing by the Federal Aviation Administration, airlines, charter/commercial operators, cargo carriers, engine manufacturers and overhaul and repair stations. This document was developed by a broad cross section of personnel from the aviation industry and government agencies and includes information obtained from a survey of a variety of operators of fixed and rotary wing aircraft and research of aircraft and engine maintenance manuals
EG-1E Gas Turbine Test Facilities and Equipment
This SAE Aerospace Standard (AS) contains landing gear strength and rigidity requirements which, in combination with other applicable specifications, define the structural design, analysis, test, and data requirements for fixed wing piloted airplanes. These requirements include, but are not limited to, the following: a General specifications: 1 The shock-absorption characteristics and strength of landing-gear units and the strength and rigidity of their control systems and of their carry-through structures. Requirements for wheels, tires, and brakes as they affect air vehicle ground loads are also included. 2 The strength of structures integral with the airplane provided for transmitting catapulting forces to the airplanes, and for engaging shipboard and shore-based arresting gear, and barricades. 3 The strength of anchor-line clamps, and the airplane strength for hoisting, jacking, towing, tie-down, and other ground- or deck-handling conditions. 4 Structural design, analysis, and test
A-5B Gears, Struts and Couplings Committee
This SAE Aerospace Information Report (AIR) provides a description of a screening method for use in the field for verifying an AMS 1428 anti-icing fluid is above its minimum low shear viscosity as published with holdover time guidelines. The test will determine if the fluid is (a) satisfactory, (b) unsatisfactory, or (c) borderline needing more advanced viscometry testing. Other field tests may be required to determine if an anti-icing fluid is useable, such as refractive index, appearance or other tests as may be recommended by the fluid manufacturer
G-12ADF Aircraft Deicing Fluids
This SAE Aerospace Recommended Practice (ARP) describes the continuous sampling and analysis of gaseous emissions from aircraft gas turbine engines. The measured gas species include carbon monoxide (CO), carbon dioxide (CO2), nitric oxide (NO), nitrogen dioxide (NO2), hydrocarbons (HC), and water vapor (H2O). This ARP excludes engine operating procedures and test modes, and is not intended for in-flight testing, nor does it apply to engines operating in the afterburning mode. It is recognized that there will probably be major advances in the gas analysis measurement technology. It is not the intent of this ARP to exclude other analysis techniques, but to form the basis of the minimum amount of conventional instruments (those in common industry usage over the last fifteen years) required for the analysis of aircraft engine exhaust. It is the responsibility of the analyst to demonstrate the alternative measurement technology has comparable (or better) performance than the techniques
E-31G Gaseous Committee
This document covers all metal, castellated, self-locking nuts made from alloy steel of the types identified under the Unified Numbering System as UNS G41300 and UNS G43400
E-25 General Standards for Aerospace and Propulsion Systems
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This SAE Aerospace Recommended Practice (ARP) provides the qualification test procedure requirements for low wattage halogen lamps (less than 35 watts) intended for use primarily in aircraft applications. The purpose of these tests is to provide a laboratory means of determining the performance characteristics of lamps under airplane power and other environmental conditions and to verify the integrity of the lamp design and production processes
A-20C Interior Lighting
This Aerospace Recommended Practice (ARP) is intended to establish recommended installation torque value limits and test criteria for machined flared and flareless hose and tube end fitting connections. Assembly of bite-type MS21922 flareless sleeves is not included in this ARP (see MIL-F-18280). This ARP is applicable to two types of connections and two basic material classifications
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This document examines the most important considerations relative to the use of proximity sensing systems for applications on aircraft landing gear. In general, the information included are applicable to other demanding aircraft sensor installations where the environment is equally severe
A-5B Gears, Struts and Couplings Committee
The purposeful integration of existing and emerging technologies into CM practice will enable collaboration with supporting systems and provide stakeholders access to authoritative and trusted data in a timely fashion at their desktop to help drive educated decision making. This lays to rest the misguided myth that CM and supporting systems operate at cross-purposes. What does it mean to have CM in a world of new initiatives and 2-week sprints (i.e., time-boxed work periods), multiple increments producing Minimum Viable Products (MVP) and synchronized with Model Based Systems Engineering (MBSE) while being digitally transformed? MBSE initiatives drive the jump from “2D” data to “3D” data, thereby becoming a Model-Centric practice. Products now enable technology to push the product lifecycle management process to new levels of efficiency and confidence. This mindset is evidenced by five major functions of CM, as discussed below, and described in EIA-649C
G-33 Configuration Management
The scope of this ARP is to define methods of determining wire lengths and minimum insertion depths of thrust wires used for retaining components together
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
For tube fitting standards with reduction/expansion, to provide precautions against the use of large changes in tube size
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This specification establishes the requirements for various types and colors of electrical insulating sleeving that will shrink to a predetermined size upon the application of heat. This specification includes provisions for demonstrating compliance with qualification requirements (see Section 4 and 7.3), in process inspection, and statistical process control inspections (see 4.4). The continuous operating temperature ranges for the sleeving classes covered by this specification are from -112 to +482 °F (-80 to +250 °C). The continuous operating temperature range for each sleeving class is given in the applicable detail specification
AE-8D Wire and Cable Committee
This SAE Recommended Practice establishes a test procedure for measuring pneumatic system differentials and time relationships for 125 psig (862 kPa) nominal air pressure brake systems
Truck and Bus Brake Systems Committee
This SAE Recommended Practice establishes the instrumentation and procedure to be used in measuring the maximum exterior sound level for engine powered equipment under 14.7 kW (20 bhp). It is intended to include equipment such as lawn mowers, snow blowers, tillers, etc. It is not intended to include equipment designed primarily for operation on highways or within factories and buildings, or vehicles such as motorcycles, snowmobiles, and pleasure motor boats that are covered by other SAE Standards or Recommended Practices. This SAE Recommended Practice may also be used when measuring the maximum exterior sound level on similar equipment powered by electricity or other power sources
This standard covers performance requirements and methods of test for master cylinder reservoir diaphragm gaskets that will provide a functional seal and protection from outside dirt and water
This SAE Standard specifies the dimensional requirements necessary for the interchangeability of tapered shaft ends and hubs for fuel injection pumps of diesel engines
Diesel Fuel Injection Equipment Standards Committee
This document provides preliminary1 safety-relevant guidance for in-vehicle fallback test driver training and for on-road testing of vehicles being operated by prototype conditional, high, and full (Levels 3 to 5) ADS, as defined by SAE J3016. It does not include guidance for evaluating the performance of post-production ADS-equipped vehicles. Moreover, this guidance only addresses testing of ADS-operated vehicles as overseen by in-vehicle fallback test drivers (IFTD). These guidelines do not address: Remote driving, including remote fallback test driving of prototype ADS-operated test vehicles in driverless operation. (Note: The term “remote fallback test driver” is included as a defined term herein and is intended to be addressed in a future iteration of this document. However, at this time, too little is published or known about this type of testing to provide even preliminary guidance.) Testing of driver support features (i.e., Levels 1 and 2), which rely on a human driver to
On-Road Automated Driving (ORAD) Committee
This SAE Recommended Practice establishes uniform requirements and guidelines for the display of capacity information of personal watercraft
Personal Watercraft Committee
This SAE Recommended Practice provides a development or possibly interim production communication protocol between engine, transmission, ABS/traction control, and retarder systems until higher speed communication links are established
Truck and Bus Low Speed Communication Network Committee
This SAE Standard specifies the essential dimensional features of R, b, and M rectangular piston ring types. Dimensional tables 8 and 9 offer the choice of two radial wall thicknesses: a. radial wall thickness "regular" (table 8); b. radial wall thickness "D/22" (table 9). The requirements of this document apply to rectangular rings for reciprocating internal combustion piston engines up to and including 200 mm diameter. They may also be used for piston rings of compressors working under similar conditions
Piston and Ring Standards Committee
This SAE Recommended Practice provides uniform procedures and minimum performance requirements for fatigue testing ferrous and aluminum wheels intended for normal highway service on travel, camping, and boat and light utility trailers drawn by passenger cars, light trucks, and multipurpose vehicles. For procedures and minimum performance requirements for wheels used on trucks, see SAE J267, and for wheels used on passenger cars, see SAE J328. For the application of passenger car and light truck wheels (inset less than 0.10 m) to this trailer service, use this procedure. For the application of heavier truck wheels (inset 0.10 m (or more)) use SAE J267. Mobile home service is outside the scope of this document. There are two basic test procedures described, a cornering fatigue test and radial fatigue test. The cornering test is directed at the wheel disc; whereas the radial test also examines the rim and attachment portion of the wheel. Both test procedures are required to obtain a
Wheel Standards Committee
This code is intended only for the inspection and maintenance of lighting equipment on motor vehicles that are in use
Road Illumination Devices Standards Committee
This SAE Recommended Practice establishes uniform Installation Parameters for desiccant Air Dryers for vehicles with compressed air systems
Truck and Bus Brake Supply and Control Components Committee
The design and location of rear-viewing mirrors or systems, and the presentation of the rear view to the driver can best be achieved if the designer and the engineer have adequate references available on the physiological functions of head and eye movements and on the perceptual capabilities of the human visual system. The following information and charts are provided for this purpose. For more complete information of the relationship of vision to forward vision, see SAE SP-279
Driver Vision Standards Committee
The purpose of this SAE Recommended Practice is to provide a glossary of radial seal terms and nomenclature which are normally encountered in the design, manufacture, installation, testing, inspection, and failure mode analysis of radial seals. The information will aid in the understanding and communication among those people associated with radial seals
Motor Vehicle Council
This SAE Standard provides test procedures, performance requirements, design guidelines, and installation guidelines for motorcycle headlamps
Motorcycle Lighting Standards Committee
This SAE Standard defines mounting devices for use with warning lamps and SMV emblems
Agricultural Tractor Standards Committee (ATSC)
Items per page:
1 – 50 of 207327