Your Selections

Kannan, Venkatesan
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Experimental Study on Tool Wear and Cutting Temperature during Machining of Nimonic C-263 and Waspaloy Based on Taguchi Method and Response Surface Methodology

Sri Sairam Engineering College-Vetri Velmurugan Kannan
Vellore Institute of Technology-Venkatesan Kannan, Devendiran Sundararajan
  • Technical Paper
  • 2019-28-0144
To be published on 2019-10-11 by SAE International in United States
Nickel based materials of Nimonic C-263 and Waspaloy are used nowadays for aerospace applications owing to its superior strength properties that are maintained at a higher temperature. Tool wear and cutting temperature in the vicinity of cutting edge are two essential machinability characteristics for any cutting tool. In this regard, this study is pursued to examine the influence of factors on measuring of tool wear (Vba) and cutting temperature (Ts) during dry machining of two alloys studied experimentally based on Taguchi method and response surface methodology. Taguchi’s L16 orthogonal array is used to design the experiment and a PVD (TiAlN), CVD (TiN/Al2O3/TiCN) coated carbide inserts are used on turning of two alloys. The factor effect on output responses are studied using analysis of variance, empirical models, and responses surface 3D plots. To minimize the response and to convert into one single optimum level, responses surface desirability function approach is applied. The results show that progress of flank wear associated with Waspaloy is faster that of Nimonic C-263 due to high cutting temperature for Waspaloy that…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Parameter Optimization during Minimum Quantity Lubrication Turning of Inconel 625 Alloy with CUO, Al2O3 and CNT Nanoparticles Dispersed Vegetable-Oil-Based Cutting Fluid

Vellore Institute of Technology-Venkatesan Kannan, Devendiran Sundararajan
  • Technical Paper
  • 2019-28-0061
To be published on 2019-10-11 by SAE International in United States
Inconel 625, nickel based alloy, is found in gas turbine blades, seals, rings, shafts, and turbine disks. On the other hand, the manufacturing of this alloy is challenging, mainly when machining processes are used due to excellent mechanical properties. Application of nanofluids in minimum quantity lubrication (MQL) shows gaining importance in the machining process, which is economical and eco-friendly. The principal objective of this investigational work is to study the influence of three types of nanofluids in the MQL turning of Inconel 625 nickel based alloys. The used nanofluids are multi-walled carbon nanotubes (CNT), alumina (Al2O3) and copper oxide (CUO) dispersed in vegetable oil. Taguchi-based L27 orthogonal array is used for the experimental design. The parameter optimization of design variables over response is carried out by the use of Taguchi-based derringer's desirability function. The design variables are machining parameters (speed, feed), nanofluids (Al2O3, CNT, CUO), and three different weight percentage (0.1, 0.25, and 0.5 wt. %). The results showed that minimum values of surface roughness could be achieved at 0.10 wt. % of nanoparticles, CNT…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Fabrication and Machinability Study of Al2219 Metal Matrix Composites Reinforced with SiN/MoS2 Nanoparticles

Sri Sairam Engineering College-Vetri Velmurugan Kannan
Vellore Institute of Technology-Venkatesan Kannan, Devendiran Sundararajan, Akshay Seth, Navya Sood, Aditya Babu
  • Technical Paper
  • 2019-28-0170
To be published on 2019-10-11 by SAE International in United States
Composites materials are substituting constituents for traditional materials due to their remarkable properties, and the addition of nanoparticles gives a new development in the material domain. The nanoparticles influence on fabrication and machinability investigation study is essential as the composites to be used in applications like automotive and aerospace. The current study investigates the machinability characteristics of Al2219 based metal composites reinforced with nanoparticles of SiN/MoS2. Al2219- reinforcements (SiN and MoS2) composites are fabricated by the method of stir casting. Four different compositions (Al2219/SiN (2 wt% and 4 wt%), , Al2219/2 wt.% SiN/ 2 wt.% MoS2, Al2219/2 wt.% MoS2) are fabricated by varying the different weight percentages of nanoparticles reinforcements. An attempt is made to study the investigation analysis of force, surface roughness, and tool wear using CNC machine lathe to consider the effect of cutting speed, cutting depth, and samples. The machinability test is carried out, and the performance is compared. Addition of 2 wt% of SiN in Al2219 is to increase the hardness of nearly about 21%, 14%, 40% compared to that of…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Turning of Inconel 825 with Coated Carbide Tool Applying Vegetable-Based Cutting Fluid Mixed with CuO, Al2O3 and CNT Nanoparticles by MQL

Vellore Institute of Technology-Venkatesan Kannan, Devendiran Sundararajan
  • Technical Paper
  • 2019-28-0060
To be published on 2019-10-11 by SAE International in United States
Inconel 825 is nickel (Ni)-iron (Fe)-chromium (Cr) alloy with additions of copper (Cu), molybdenum (Mo), and titanium (Ti). The alloy has excellent resistance to corrosion and is often the most cost-effective alloy in sulphuric acid piping vessels and chemical process equipment. No attempt of applying MQL with three nanofluids was reported conferring to the works accessed. The present study is focused on evaluating the effect of the addition of three nanoparticles (CuO, Al2O3, and CNT) in vegetable oil applied by MQL mode during turning of Inconel 825 with coated carbide tool. Cutting force, surface roughness, and tool wear are evaluated. The results showed that the addition of nCNT substantially improved the machining performance and smaller flank the tool edge, while the adhesion and abrasion are observed as wear mechanism and better results are obtained at 0.5% of nCNT+ vegetable oil to produce the lowest values.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Investigation of Machinability Characteristics and Chip Morphology on Inconel 718: Dry and MQL

Vellore Institute of Technology-Devendiran Sundararajan, Venkatesan Kannan, Prafful Kumar, Rishabhsingh Shakya
  • Technical Paper
  • 2019-28-0066
To be published on 2019-10-11 by SAE International in United States
Inconel 718 has excellent material properties, corrosion, and oxidation property among the nickel based superalloy. This property makes it suitable for producing components operating under extreme environments subjected to pressure and heat. The present study aims to examine the machinability comparison under dry and MQL turning of Inconel 718. The secondary aim is to report the sustainable machining on Inconel 718. Dry and MQL (Minimum Quantity Lubrication) experiments are carried out on Inconel 718 alloy based on Taguchi’s designed L16 orthogonal array. The cutting tools are an advanced coated cutting tool and uncoated tool. The levels of turning parameters are varied at 70, 120, 170 and 220 m/min of turning speed, 0.1, 0.15, 0.2 and 0.25 mm/rev of feed rate and 0.3, 0.4, 0.5 and 0.6 mm of cutting depth. The cutting forces, surface roughness, flank wear, and chip morphology are taken for the current investigation. The factor effect on output responses is studied using 2D plots. At the comparative analysis, the decrement in surface roughness value by 3.59%, increment in cutting force by 29.14%…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Machinability and Parametric Optimization of Inconel 600 Using Taguchi-Desirability Analysis under Dry Environment

Vellore Institute of Technology-Venkatesan Kannan, Devendiran Sundararajan, Abhishek Chahal, Devesh Raj
  • Technical Paper
  • 2019-28-0068
To be published on 2019-10-11 by SAE International in United States
Inconel 600 is a face-centered cubic structure and nickel-chromium alloy. Alloy 600 has good resistance to oxidation, corrosion-resistant, excellent mechanical properties, and good creep rupture strength at a higher temperature. Alloy 600 is used in heat treating, phenol condensers, chemical and food processing, soap manufacture, vegetable, and fatty acid vessels. In this context, the present paper investigates the machinability characteristics of Alloy 600 under dry environment. Also, the parametric effect of cutting speed, feed rate, and cutting depth on the force, surface roughness, and tool wear is carried out using 3-Dimensional surface and 1-Dimensional plots. The optimal parameters are determined systematically based on Taguchi-desirability analysis with turned with TiAlN coated carbide insert. From the graphical analysis of collected data, the low rate of feed and moderate cutting for roughness and cutting force and average feed rate for tool wear with low cutting depth. Probability test at 95% confidence reveals the residual of machining data falls reasonably on a straight line and can be taken for factor optimization. Variance test reveals that the cutting depth (68.34%)…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Experimental Investigation on Turning Characteristics of TiC/MoS2 Nanoparticles Reinforced Al7075 Using TiN Coated Cutting Tool

Sri Sairam Engineering College-Vetri Velmurugan Kannan
Vellore Institute of Technology-Venkatesan Kannan, Devendiran Sundararajan, Budireddy Uday Kumar, Dhulipalla Anvesh, Varupula Akhil
  • Technical Paper
  • 2019-28-0165
To be published on 2019-10-11 by SAE International in United States
In recent years, aluminum metal matrix composites (Al-MMC) are found as a potential material for numerous applications owing to its excellent tribological and mechanical properties. In this work, the machining characteristics of aluminum alloy (Al7075) reinforced with TiC/MoS2 having nanoparticle has been studied. The samples of aluminum metal matrix composites by varying TiC in 0, 2 and 4 and MoS2 in 0 and 2 of the percentage weight of aluminum alloy (Composite 1(Al7075), Composite 2 (Al7075/2TiC/2MoS2) and composite 3 (Al7075/4TiC/2MoS2), respectively) are fabricated by the stir-casing method. The turning characteristics of the developed metal matrix composites are studied at various parameters such as cutting velocity (30 m/min, 60 m/min and 90 m/min), cutting depth (0.5 mm, 1.0 mm and 1.5 mm) and composites (1, 2 and 3) using TiN coated cutting tool by dry turning at 0.05 mm/rev feed rate. The turning characteristics of the prepared samples are compared each other under L20 orthogonal array on CNC turning machine. The significant findings in the present study are: hardness of base aluminum alloy is found to…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Investigation of Machinability Characteristics on Turning of Nimonic 90A Using Al2O3 and CNT Nanoparticle in Groundnut Oil

Vellore Institute of Technology-Venkatesan Kannan, Devendiran Sundararajan
  • Technical Paper
  • 2019-28-0072
To be published on 2019-10-11 by SAE International in United States
Nimonic 90A alloy is a nickel-chromium-cobalt alloy and found as a potential material for turbine blades, discs, forgings, a ring section, and hot-working tools. This paper presents the effect of concentration along with cutting speed and feed rate on Fz: cutting force, Ra: surface roughness and Vba: tool wear with the application of two different nanofluids (NFS) on turning of Nimonic 90A by TiAlN PVD carbide cutting inserts. The nanoparticles suspended in oil taken for present investigation are nAl2O3, nCNT, and groundnut oil. The Taguchi L9 orthogonal array and derringer’s desirability response surface has been employed for parameter design and optimal search. 3D surface plots, factor effect plots, Taguchi S/N, and variance tests are used to study the effect of concentration on the machining performance of Nimonic 90A. The statistical analysis revealed % concentration for nCNT and cutting speed for nAl2O3 are found as an influenced parameter on performance characteristics. From the optimization analysis, 0.25% nCNT NFs along with a cutting speed of 40 m/min and 0.17 mm/rev feed rate has proved the better machining…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Empirical and Artificial Neural Network Modeling of Laser Assisted Hybrid Machining Parameters of Inconel 718 Alloy

Srisai Ram Engineering College-Vetri Velmurugan Kannan
Vellore Institute of Technology-Venkatesan Kannan
Published 2018-07-09 by SAE International in United States
In the present paper, to predict the process relation between laser-assisted machining parameters and machinability characteristics, statistical models are formulated by employing surface response methodology along with artificial neural network. Machining parameters such as speed of cut; the rate of feed; along with the power of laser are taken as model input variables. For developing confidence limit in collected raw experimental data, the full factorial experimental design was applied to cutting force; surface roughness; along with flank wear. Response surface method (RSM) with the least square method is used to develop the theoretical equation. Furthermore, artificial neural network method has been done to model the laser-assisted machining process. Then, both the models (RSM and ANN) are compared for accuracy regarding root mean square error (RMSE); model predicted error (MPE) along with the coefficient of determination (R2). The results show that the ANN model estimates the machinability indices with high accuracy that provides a maximum precision benefit range of about 10% - 22% than RSM model.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Parametric Study, the Process Benefits, Optimization and Chip Morphology Study of Machining Parameter on Turning of Inconel 718 Using CVD Coated Tool and Nd: YAG Laser

Srisai Ram Engineering College-Vetri Velmurugan Kannan
Vellore Institute of Technology-Venkatesan Kannan
Published 2018-07-09 by SAE International in United States
This paper presents the parametric study, process benefits, optimization and chip appearance of machining parameters on turning of the Inconel 718 using Nd: YAG laser source. To analyze the mentioned above effect on alloy 718, the cutting inserts of chemical vapor disposition coated (CVD) TiN/TICN/Al2O3 are used to turn at the time of machining. To evaluate the linear (mean effect plots) and interaction effect (3D surface plots) of laser parameters on the force, roughness and tool wear to keep the minimal, experiments of the L27 orthogonal array are done by selecting the controllable parameters viz speed, the rate of feed along with laser power. From the parametric study, increase in speed and laser power along with decrement in the rate of feed resulted in lower cutting force. But surface finish and tool wear reduced with a decline in speed and scale of feed and increased with increment in laser power. The investigations result in shows that with the application of moderate laser power decline the cutting force by 28%; both surface roughness along with flank…
This content contains downloadable datasets
Annotation ability available