Your Selections

Johansson, Bengt
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

On the HCCI Octane Boosting Effects of γ-Valerolactone

King Abdullah Univ. of Science & Tech.-Jean-Baptiste Masurier, Binod Giri, Gani Issayev, Bengt Johansson, Aamir Farooq
  • Technical Paper
  • 2019-24-0026
Published 2019-09-09 by SAE International in United States
This study examined the octane boosting effects of γ-valerolactone, a fuel derived from lignocellulosic biomass, under Homogeneous Charge Compression Ignition (HCCI) combustion mode. The experiments were performed in a Cooperative Fuel Research (CFR) engine under four sets of conditions defined by the combinations of intake temperatures and rotation speed. Octane boosting effects were rated with FACE (Fuel for Advanced Combustion Engine) J gasoline as a base fuel. Due to the non-miscibility of γ-valerolactone into FACE J, a new approach was proposed in which the octane boosting effect of a mixture comprised up of two-third γ-valerolactone and one-third ethanol was investigated. To evaluate the effect of γ-valerolactone, the octane boosting effect of pure ethanol into FACE J was also investigated such that comparison can be drawn. Further attempts were made to extract the octane boosting effects of pure γ-valerolactone. For convenience, both volumetric and molar approaches were considered to rationalize the experimental results. The results showed that γ-valerolactone is a good octane booster, and that it possesses higher octane enhancement potential than ethanol for a low…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Thermal Efficiency Comparison of Different Injector Constellations in a CI Engine

King Abdullah Univ. of Science & Tech.-Gustav Nyrenstedt, Hao Shi, Bengt Johansson
New Ace Inst Co Ltd-Kazumasa Watanabe, Kenji Enya, Noboru Uchida
Published 2019-09-09 by SAE International in United States
More stringent emission regulations call for high-efficiency engines in the heavy-duty vehicle sector. Towards this goal, reduced heat losses, as well as increased work output, are needed. In this study, a multiple injector concept to control the combustion as well as reduce the hot boundary zones is proposed. Earlier studies have proven that multiple injectors experience lower heat losses and higher efficiency. However, a comprehensive investigation of the causes for experimental heat loss was not performed in depth. Experiments in a heavy-duty CI engine equipped with three injectors were thus performed. Engine configurations of single, dual and triple injectors were compared for a single-injection case as well as a multi-injection (Sabathe-cycle) case. Heat losses, efficiency and the emission levels were quantified and investigated. Optical experiments were performed to investigate the temperature field as well as flame behavior. This led to further understanding of the heat loss drivers. Experimental data was coupled with the double compression expansion engine concept for waste heat recovery, utilizing the energy from reduced heat losses. Notable findings included an efficiency increase…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

In Situ Injection Rate Measurement to Study Single and Split Injections in a Heavy-Duty Diesel Engine

King Abdullah University of Science & Te-Bassam S. E. Aljohani, Moez Ben Houidi, Rafig Babayev, Khalid Aljohani, Bengt Johansson
Published 2019-09-09 by SAE International in United States
The split injection strategy holds a potential for high pressure combustion engines. One advantage of such strategy is the capability to control the heat release rate, which also implies the use of multiple split-injections with relatively short dwell intervals. Most injection rate measurement techniques require installment of the injector on a dedicated test rig. However, these techniques fail to accurately reproduce real-engine operating conditions. Using the spray impingement method, this paper investigates the injection rate of a high flow-rate solenoid injector while being operated on the engine. The aim is to have an experimental configuration as similar as possible to the real engine in terms of the acoustics and the fuel temperature within the injection system. The assumption of spray force proportional to the spray momentum is used here to measure the injection rate. The spray momentum is measured while the injector is mounted on the Volvo D13 engine and connected to the in-series fuel rail and pump. A high-natural-frequency piezoelectric pressure transducer is mounted perpendicularly at 4 mm from one of the nozzle holes.…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

A Study of Lean Burn Pre-Chamber Concept in a Heavy Duty Engine

King Abdullah Univ of Science & Tech-Ponnya Hlaing, Manuel Echeverri Marquez, Vijai Shankar Bhavani Shankar, Moez Ben Houidi, Bengt Johansson
Saudi Aramco-Emre Cenker
Published 2019-09-09 by SAE International in United States
Due to stringent emission standards, the demand for higher efficiency engines has been unprecedentedly high in recent years. Among several existing combustion modes, pre-chamber spark ignition (PCSI) emerges to be a potential candidate for high-efficiency engines. Research on the pre-chamber concept exhibit higher indicated efficiency through lean limit extension while maintaining the combustion stability. In this study, a unique pre-chamber geometry was tested in a single-cylinder heavy-duty engine at low load lean conditions. The geometry features a narrow throat, which was designed to be packaged inside a commercial diesel injector pocket. The pre-chamber was fueled with methane while the main chamber was supplied with an ethanol/air mixture. The ‘avalanche activated combustion’ or L.A.G. process was explored which relies on enriched pre-chamber combustion to generate radicals which, upon being discharged into the main combustion chamber, will trigger ignition sites distributed in the combustion chamber, thus achieving fast combustion. The ability of PCSI concept to enhance the lean limit with progressive enrichment in the pre-chamber was demonstrated. In addition, passive pre-chamber concept, where no additional fuel was…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Oxy-Fuel HCCI Combustion in a CFR Engine with Carbon Dioxide as a Thermal Buffer

King Abdullah Univ of Science & Tech-JEAN-BAPTISTE MASURIER, Ali Elkhazraji, Bengt Johansson
King Abdullah Univ. of Science & Tech.-Abdulrahman Mohammed
Published 2019-09-09 by SAE International in United States
Global warming and the increasingly stringent emission regulations call for alternative combustion techniques to reduce CO2 emissions. Oxy-fuel combustion is one of those techniques since the combustion products are easily separated by condensing the water and storing CO2. A problem associated with the burning of fuel using pure oxygen as an oxidant is that it results in high adiabatic flame temperature. This high flame temperature is decreased by introducing a thermal buffer to the system. A thermal buffer in this context is any gas that does not participate in combustion but at the same time absorbs some of the released heat and thus decreases the temperature of the medium. Many experiments have been conducted to study oxy-fuel combustion in ICE using noble gases as thermal buffers. However, those experiments focused on using hydrogen as a fuel to avoid any build-up of CO2 in the system. On the contrary, the work presented in this paper investigates using CO2 as a thermal buffer for oxy-fuel combustion in HCCI engines. Experiments were performed on a standard Waukesha variable…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Study of Fuel Octane Sensitivity Effects on Gasoline Partially Premixed Combustion Using Optical Diagnostics

King Abdullah Univ of Science & Tech-Hao Shi, Yanzhao An, Bengt Johansson
  • Technical Paper
  • 2019-24-0025
Published 2019-09-09 by SAE International in United States
Partially premixed combustion (PPC) is a low-temperature combustion concept that could deliver higher engine efficiency, as well as lower emissions. Gasoline-like fuel compression ignition (GCI) is beneficial for air/fuel mixing process under PPC mode because of the superior auto-ignition resistance to prolong ignition delay time. In current experiments, three surrogate fuels with same research octane number (RON77) but different octane sensitivities (OS), PRF77 (S = 0), TPRF77-a (S = 3) and TPRF77-b (S = 5), are tested in a full-transparent single cylinder AVL optical compression ignition (CI) engine at low load conditions.Aiming at investigating the fuel octane sensitivity effect on engine combustion behavior as well as emissions under GCI-PPC mode, engine parameters, and emission data during combustion are compared for the test fuels with a change of injection timing. In addition, in order to get a deeper insight into fuel OS effect on GCI-PPC mode, high-speed natural flame luminosity (NFL) imaging techniques are used for visualizing in-cylinder combustion processes. The results show that higher octane sensitivity generally lead to delayed start of combustion, prolonged ignition…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Compression Ratio and Intake Air Temperature Effect on the Fuel Flexibility of Compression Ignition Engine

King Abdullah Univ of Science & Tech.-Abdullah S. AlRamadan, Moez Ben Houidi, Bassam S. E. Aljohani, Hassan Eid, Bengt Johansson
Published 2019-09-09 by SAE International in United States
The effect of compression ratio (CR) and intake air temperature on the combustion characteristics of fuels with different octane ratings were investigated on a single-cylinder heavy duty engine. The study focused on Primary Reference Fuels (PRFs) and commercial grade diesel with octane numbers ranging from 0 to 100. The engine was configured at a CR of 11.5:1, which is lower than typical heavy-duty compression ignition CI engines. This aims to compare the fuels’ burning regime with recently reported measurements at CR17:1. Experiments were performed at different intake air temperatures of 20 to 80 °C and net indicated mean effective pressure (IMEPNet) of 5 to 20 bar. The injection rates have been characterized to determine the hydraulic delay of the injector and thus define the actual ignition delay time. At low loads, diesel-like fuels were found to burn in partially premixed combustion (PPC) mode whereas high octane fuels did not ignite. At high loads, fuels combustion becomes diffusion driven regardless of their RON or MON values. The effect of intake air temperature on the combustion characteristics…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

The Physical and Chemical Effects of Fuel on Gasoline Compression Ignition

King Abdullah University of Science & Technology-R. Vallinayagam, Ponnya Hlaing, Abdullah S. AlRamadan, Yanzhao An, Bengt Johansson
Saudi Aramco-Jaeheon Sim, Junseok Chang
Published 2019-04-02 by SAE International in United States
In the engine community, gasoline compression ignition (GCI) engines are at the forefront of research and efforts are being taken to commercialize an optimized GCI engine in the near future. GCI engines are operated typically at Partially Premixed Combustion (PPC) mode as it offers better control of combustion with improved combustion stability. While the transition in combustion homogeneity from convectional Compression Ignition (CI) to Homogenized Charge Compression Ignition (HCCI) combustion via PPC has been comprehensively investigated, the physical and chemical effects of fuel on GCI are rarely reported at different combustion modes. Therefore, in this study, the effect of physical and chemical properties of fuels on GCI is investigated. In-order to investigate the reported problem, low octane gasoline fuels with same RON = 70 but different physical properties and sensitivity (S) are chosen. Fuels with comparable sensitivity and RON are chosen to study the impact of physical properties on GCI. On the other hand, by keeping the same RON and physical properties, the effect of sensitivity on GCI is investigated. In this regard, three test…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Variable Compression Ratio (VCR) Piston - Design Study

King Abdullah University of Science & Technology-Hao Shi, Sultan Al Mudraa, Bengt Johansson
Published 2019-04-02 by SAE International in United States
Variable compression ratio (VCR) technology has long been recognized as a method for improving the automobile engine performance, efficiency, fuel economy with reduced emission. This paper presents a design of hydraulically actuated piston based on the VCR piston proposed by the British Internal Combustion Engine Research Institute (BICERI). In this design, the compression height of the piston automatically changes in response to engine cylinder pressure by controlling the lubrication oil flow via valves in the piston. In addition, numerical models including piston kinetic model, oil hydraulic model, compression ratio model and etc., have been established to evaluate the piston properties. The oil flow characteristics between two chambers in VCR piston have been investigated and the response behaviors of VCR engine and normal engine, such as compression pressure and peak cylinder pressure, are compared at different engine loads. Moreover, the energy losses because of VCR piston vibration at high engine loads in firing cycles have been calculated. According to the analysis results, both of energy loss and related percentage in piston work output rise with engine…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Combustion Stratification and Dynamic Flame Tracing Analysis of Partially Premixed Combustion in a Compression Ignition Engine Fueled with Low-Octane Fuel

King Abdullah University of Science & Technology-Yanzhao An, Hao Shi, R Vallinayagam, Bengt Johansson
Saudi Aramco-Jaeheon Sim, Junseok Chang
Published 2019-04-02 by SAE International in United States
Partially premixed combustion (PPC) is a low-temperature combustion concept, which is between conventional diesel compression ignition (CI) and homogeneous charge compression ignition (HCCI). In PPC mode, the start of injection timing (SOI) is earlier than that of CI and later than that of HCCI and stratified in-cylinder fuel/air mixture can be formed to control the auto-ignition by the fuel injection timing. Gasoline fuel is beneficial for PPC mode because of its superior resistance to auto-ignition, which can enhance fuel-air charge mixing process with longer ignition delay time. The scope of this study is to investigate in-cylinder auto-ignition, combustion evolution, combustion stratification, and engine-out emissions at PPC operating mode under lean and low load engine conditions with different injection timings. Primary reference fuel PRF77, was selected as the low-octane test fuel. Fuel-tracer planar laser-induced fluorescence (PLIF) imaging and high-speed color imaging based on natural flame luminosity were performed to visualize fuel injection, spray-wall interaction, and subsequent combustion evolution. Based on the intensity of high sped combustion images, combustion stratification and dynamic flame tracing were evaluated to…
This content contains downloadable datasets
Annotation ability available