Your Selections

Jansen, Liesbeth
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Impact of FAME Content on the Regeneration Frequency of Diesel Particulate Filters (DPFs)

SAE International Journal of Fuels and Lubricants

Aristotle University of Thessaloniki-Dimitris Katsaounis, Christos Samaras, Savas Geivanidis, Zissis Samaras
Concawe-Kenneth Rose, Heather Hamje, Liesbeth Jansen, Corrado Fittavolini, Richard Clark, Maria Dolores Cardenas Almena
  • Journal Article
  • 2014-01-1605
Published 2014-04-01 by SAE International in United States
Modern diesel vehicles utilize two technologies, one fuel based and one hardware based, that have been motivated by recent European legislation: diesel fuel blends containing Fatty Acid Methyl Esters (FAME) and Diesel Particulate Filters (DPF). Oxygenates, like FAME, are known to reduce PM formation in the combustion chamber and reduce the amount of soot that must be filtered from the engine exhaust by the DPF. This effect is also expected to lengthen the time between DPF regenerations and reduce the fuel consumption penalty that is associated with soot loading and regeneration.This study investigated the effect of FAME content, up to 50% v/v (B50), in diesel fuel on the DPF regeneration frequency by repeatedly running a Euro 5 multi-cylinder bench engine over the European regulatory cycle (NEDC) until a specified soot loading limit had been reached. The results verify the expected reduction of engine-out particulate mass (PM) emissions with increasing FAME content and the reduction in fuel economy penalty associated with reducing the frequency of DPF regenerations. Fuel dilution measurements on lubricant samples taken from the…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Impact of Biodiesel Blends on Fuel Consumption and Emissions in Euro 4 Compliant Vehicles

SAE International Journal of Fuels and Lubricants

Aristotle Univ. of Thessaloniki-Zissis Samaras, Georgios Fontaras, Maria Kalogirou
BP Global Fuels Technology-Cassandra Higham
  • Journal Article
  • 2010-01-1484
Published 2010-05-05 by SAE International in United States
Fatty Acid Methyl Ester (FAME) products derived from vegetable oils and animal fats are now widely used in European diesel fuels and their use will increase in order to meet mandated targets for the use of renewable products in road fuels. As more FAME enters the diesel pool, understanding the impact of higher FAME levels on the performance and emissions of modern light-duty diesel vehicles is increasingly important. Of special significance to Well-to-Wheels (WTW) calculations is the potential impact that higher FAME levels may have on the vehicle's volumetric fuel consumption.The primary objective of this study was to generate statistically robust fuel consumption data on three light-duty diesel vehicles complying with Euro 4 emissions regulations. These vehicles were evaluated on a chassis dynamometer using four fuels: a hydrocarbon-only diesel fuel and three FAME/diesel fuel blends containing up to 50% v/v FAME. One FAME type, a Rapeseed Methyl Ester (RME), was used throughout. One vehicle was equipped only with an oxidation catalyst while the other two were also equipped with two types of Diesel Particulate Filters…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development of a New Peugeot XUD9 10 Hour Cyclic Test to Evaluate the Nozzle Coking Propensity of Diesel Fuels

Ethyl Petroleum Additives Ltd.-Avtar Panesar
Kuwait Petroleum Research & Technology B.V.-Liesbeth Jansen
Published 2000-06-19 by SAE International in United States
The XUD9 IDI 6-hour steady-state test was developed to evaluate the nozzle coking propensity of diesel fuels. After the CEC 1997 Round-Robin, it was concluded that this test could not discriminate between fuels with the statistical confidence required for CEC tests. Furthermore, it was noted that the test would have to be considerably improved if it was to have any chance of meeting the CEC statistical standards.In 1998, Texaco proposed a 10 hour cyclic test as a replacement for the 6 hour steady-state test. A Task-Force was formed to investigate whether this test was a suitable alternative. After a mini Round-Robin, using the 10 hour cyclic test method, the high potential of the test was confirmed. Dynamic fuel injection timing was identified as the single most important parameter affecting nozzle coking.Cost-effective equipment was selected for measuring dynamic fuel injection timing accurately. The fuel pump was modified so that its internal automatic injection timing mechanism was locked to give a fixed injection timing. Several significant changes were made to the test method to ensure better control…
Annotation ability available