Your Selections

Hotta, Tapano
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Advanced Exergy Analysis of an Air Craft Gas Turbine Engine at Different Power Loading Operations

GIFT, Bhubaneshwar-Alok Kumar Mohapatra
VIT Universtity Vellore-Tapano Hotta
Published 2019-09-16 by SAE International in United States
The innovations in aircraft propulsion have been identified as the key parameter towards the progress in transportation. Continuous advancement in the performance and efficiency of propulsion has enabled aircraft to travel over larger distances with higher speed. Aviation is also responsible for approximately 2% of total greenhouse gas emission and is expected to grow around 3% by 2050. The present article aims to use the exergetic analysis of a turboprop engine which should be helpful in designing of such engines and also helps these engine users to regulate and select the operation modes. A gas turbine with film air cooling of turbine blades has been proposed to be the turboprop engine. The engine is analyzed on exergy point of view at different power loading operation modes and the performance is studied. Selected exergetic measures under consideration are Exergy Efficiency, Fuel Exergy Depletion Ratio, Relative Exergy Consumption Ratio, Exergetic Improvement potential and Productivity Lack ratio. The total fuel exergy depletion ratio of the turboprop engine is estimated to be around 64.7 % at 100% loading. Also,…
This content contains downloadable datasets
Annotation ability available