The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

Erlandsson, Anders Christiansen
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

CFD-Driven Preliminary Investigation of Ethanol-Diesel Diffusive Combustion in Heavy-Duty Engines

KTH Royal Institute of Technology-Nicola Giramondi, Mihai Mihaescu, Anders Christiansen Erlandsson
Scania CV AB-Anders Jäger
  • Technical Paper
  • 2019-01-2192
Published 2019-12-19 by SAE International in United States
The introduction of renewable alcohols as fuels for heavy-duty engines may play a relevant role for the reduction of the carbon footprint of the transport sector. The direct injection of ethanol as main fuel and diesel as pilot fuel in the engine combustion chamber through two separate injectors may allow good combustion controllability over the entire engine operating range by targeting diffusive combustion. Closed-cycle combustion simulations have been carried out using AVL FIRE coupled to AVL TABKIN for the implementation of the Flamelet Generated Manifold (FGM) chemistry reduction technique in order to investigate the influence of the injection system geometry and the injection strategy of pure ethanol and diesel fuel on ignition characteristics and combustion at different operating conditions.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Performance Analysis of Volumetric Expanders in Heavy-Duty Truck Waste Heat Recovery

KTH Royal Institute of Technology-Sandhya Thantla, Jens Fridh, Anders Christiansen Erlandsson
Scania CV AB-Jonas Aspfors
  • Technical Paper
  • 2019-01-2266
Published 2019-12-19 by SAE International in United States
With increasing demands to reduce fuel consumption and CO2 emissions, it is necessary to recover waste heat from modern Heavy Duty (HD) truck engines. Organic Rankine Cycle (ORC) has been acknowledged as one of the most effective systems for Waste Heat Recovery (WHR) due to its simplicity, reliability and improved overall efficiency. The expander and working fluid used in ORC WHR greatly impact the overall performance of an integrated engine and WHR system. This paper presents the effects of volumetric expanders on the ORC WHR system of a long haulage HD truck engine at a steady-state engine operating point chosen from a real-time road data. Performance of a long haulage HD truck engine is analyzed, based on the choice of three volumetric expanders for its WHR system, using their actual performance values. The expanders are: an oil-free open-drive scroll, a hermetic scroll and an axial piston expander with working fluids R123, R245fa and ethanol, respectively. Performance of the engine that accommodates the WHR system, with each expander and working fluid combination, is assessed based on…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Characterization of Deposits Collected from Plugged Fuel Filters

KTH Royal Institute of Technology-Botond Csontos, Hanna Bernemyr, Anders Christiansen Erlandsson
Scania CV AB-Oscar Forsberg, Mayte Pach, Henrik Hittig
Published 2019-09-09 by SAE International in United States
Fuel filters serve as a safety belt for modern compression ignition engines. To meet the requirements from environmental regulations these engines use the common rail injection system, which is highly susceptible to contamination from the fuel. Furthermore, the public awareness towards global warming is raising the need for renewable fuels such as biodiesel. An increased fuel variety brings a higher requirement for fuel filters as well. To better understand the process of filtration, awareness of the different possible contaminants from the field is needed. This study used several chemical characterization techniques to examine the deposits from plugged fuel filters collected from the field. The vehicle was run with a biodiesel blend available on the market. The characterization techniques included X-ray fluorescence (XRF), Fourier-transform infrared spectroscopy (FTIR) joined with attenuated total reflectance (ATR) sampling, gas chromatography-mass spectrometry (GC-MS), and lastly thermal gravimetric analyzer combined with FTIR and a GC-MS (TGA/FTIR/GC-MS). In addition the remaining ash from TGA was measured in energy-dispersive X-ray spectroscopy (EDX). Deposits were scraped from the used filter, and prepared for the different…
This content contains downloadable datasets
Annotation ability available