Your Selections

Chakraborty, Apurva
Show Only

Collections

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Performance Gains of Load Sensing Brake Force Distribution in Motorcycles

Force Motors-Apurva Chakraborty
  • Technical Paper
  • 2019-28-2426
To be published on 2019-11-21 by SAE International in United States
Commercial motorcycles and scooters incorporate independent circuits for front and rear brake actuation, thus precluding load dependent brake force distribution. In all cases of manual brake force modulation between the front and rear wheels, there is poor compensation for the changes in wheel loads on the account of longitudinal weight transfer, thus making it is challenging to provide an adequate braking force to each wheel. The ratio in which the braking force should be distributed between the front and the rear wheels is dependent on the motorcycle geometry, weight distribution, mechanical sizing of braking system components, and is a variable based on the deceleration. This connotes that a fixed value of front and rear braking forces can be optimized for only a narrow range of motorcycle’s deceleration. Maximum braking performance occurs just prior to wheel lockup, as a sliding tire provides less grip than a rolling tire. This is also the scenario when both the tires are doing the maximum work in decelerating the motorcycle. Therefore, an optimal brake force distribution is one that locks…