The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

Cardenas Almena, Maria Dolores
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Impact of FAME Content on the Regeneration Frequency of Diesel Particulate Filters (DPFs)

SAE International Journal of Fuels and Lubricants

Aristotle University of Thessaloniki-Dimitris Katsaounis, Christos Samaras, Savas Geivanidis, Zissis Samaras
Concawe-Kenneth Rose, Heather Hamje, Liesbeth Jansen, Corrado Fittavolini, Richard Clark, Maria Dolores Cardenas Almena
  • Journal Article
  • 2014-01-1605
Published 2014-04-01 by SAE International in United States
Modern diesel vehicles utilize two technologies, one fuel based and one hardware based, that have been motivated by recent European legislation: diesel fuel blends containing Fatty Acid Methyl Esters (FAME) and Diesel Particulate Filters (DPF). Oxygenates, like FAME, are known to reduce PM formation in the combustion chamber and reduce the amount of soot that must be filtered from the engine exhaust by the DPF. This effect is also expected to lengthen the time between DPF regenerations and reduce the fuel consumption penalty that is associated with soot loading and regeneration.This study investigated the effect of FAME content, up to 50% v/v (B50), in diesel fuel on the DPF regeneration frequency by repeatedly running a Euro 5 multi-cylinder bench engine over the European regulatory cycle (NEDC) until a specified soot loading limit had been reached. The results verify the expected reduction of engine-out particulate mass (PM) emissions with increasing FAME content and the reduction in fuel economy penalty associated with reducing the frequency of DPF regenerations. Fuel dilution measurements on lubricant samples taken from the…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Internal Diesel Injector Deposits: Sodium Carboxylates of C12 Succinic Acids and C16 and C18 Fatty Acids

REPSOL-Maria Dolores Cardenas Almena, Octavio Lucio Esperilla, Francisco Martin Manzanero, Yolanda Murillo Duarte, Luis Carlos Quintero Toscano, Guillermo Wolff
Published 2012-09-10 by SAE International in United States
Over the last few years, problems caused by internal injector deposits have appeared sporadically in Spain. These deposits can lead to engine vibrations, unstable idling or poor starting.This paper presents and discusses the results of a study on the internal deposits of common rail injectors from light and heavy-duty vehicles from the field in Spain since 2005. Using analytical techniques like SEM-EDS, FTIR and GC-MS, the internal deposits were analyzed and found to be composed mainly of carboxylic salts from C12 succinic acids and C16 and C18 fatty acids. Several fuel additives were analyzed using the procedure developed in this work and evidence was obtained to the effect that the chemical composition of corrosion inhibitor additive, which have been used in Spanish pipelines during the last few years, relates to the formation of the internal deposits found in the common rail injectors studied, when sodium ions are present in the fuel.A common rail diesel engine test was developed to reproduce the internal diesel injector deposits found in the field and to verify the analytical results…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Impact of Biodiesel Blends on Fuel Consumption and Emissions in Euro 4 Compliant Vehicles

SAE International Journal of Fuels and Lubricants

Aristotle Univ. of Thessaloniki-Zissis Samaras, Georgios Fontaras, Maria Kalogirou
BP Global Fuels Technology-Cassandra Higham
  • Journal Article
  • 2010-01-1484
Published 2010-05-05 by SAE International in United States
Fatty Acid Methyl Ester (FAME) products derived from vegetable oils and animal fats are now widely used in European diesel fuels and their use will increase in order to meet mandated targets for the use of renewable products in road fuels. As more FAME enters the diesel pool, understanding the impact of higher FAME levels on the performance and emissions of modern light-duty diesel vehicles is increasingly important. Of special significance to Well-to-Wheels (WTW) calculations is the potential impact that higher FAME levels may have on the vehicle's volumetric fuel consumption.The primary objective of this study was to generate statistically robust fuel consumption data on three light-duty diesel vehicles complying with Euro 4 emissions regulations. These vehicles were evaluated on a chassis dynamometer using four fuels: a hydrocarbon-only diesel fuel and three FAME/diesel fuel blends containing up to 50% v/v FAME. One FAME type, a Rapeseed Methyl Ester (RME), was used throughout. One vehicle was equipped only with an oxidation catalyst while the other two were also equipped with two types of Diesel Particulate Filters…
Annotation ability available