The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

Bhat, Pradeep K.
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Connected Controls and Optimization System for Vehicle Dynamics and Powertrain Operation on a Light-Duty Plug-In Multi-Mode Hybrid Electric Vehicle

Michigan Technological University-Joseph Oncken, Joshua Orlando, Pradeep K. Bhat, Brandon Narodzonek, Christopher Morgan, Darrell Robinette, Bo Chen, Jeffrey Naber
  • Technical Paper
  • 2020-01-0591
To be published on 2020-04-14 by SAE International in United States
This paper presents an overview of the connected controls and optimization system for vehicle dynamics and powertrain operation on a light-duty plug-in multi-mode hybrid electric vehicle developed as part of the DOE ARPA-E NEXTCAR program by Michigan Technological University in partnership with General Motors Co. The objective is to enable a 20% reduction in overall energy consumption and a 6% increase in electric vehicle range of a plug-in hybrid electric vehicle through the utilization of connected and automated vehicle technologies. Technologies developed to achieve this goal were developed in two categories, the vehicle control level and the powertrain control level. Tools at the vehicle control level include Eco Routing, Speed Harmonization, Eco Approach and Departure and in-situ vehicle parameter characterization. Tools at the powertrain level include PHEV mode blending, predictive drive-unit state control, and non-linear model predictive control powertrain power split management. These tools were developed with the capability of being implemented in a real-time vehicle control system. As a result, many of the developed technologies have been demonstrated in real-time using a fleet of…