Your Selections

Arde, Vasundhara
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Effect of Eccentric Imbalance of Various Crank Train Components on Vibrations in Single Cylinder Diesel Engines

Tafe Motors and Tractors Limited-Puneet Julaha, Vasundhara Arde, Remesan Chirakkal
  • Technical Paper
  • 2019-28-2417
Published 2019-11-21 by SAE International in United States
Diesel engine is the main source of power for many agricultural applications such as water pump sets, compressors and tractors. At the same time it is also the main source of vibrations. Mechanical vibrations have instantaneous and long term effects on human body. Kinds of effects depend upon duration of exposure and frequency of vibrations. The increasing demands of improved comfort levels of operators are putting pressures on tractor manufacturers on reducing the vibration levels which thereby resulting in improving diesel engine vibrations.Vibration is the movement or mechanical oscillations about an equilibrium position of a machine or component. A Vibration analysis is about the art of looking for changes in the vibration pattern and then relating those changes. Vibration always occurs when there is unbalanced body in reciprocating or rotary motion. In an internal combustion engine there are many parts in reciprocating and rotary motion such as pistons, connecting rod, crankshaft, flywheel etc.This paper explains the study carried out to evaluate combined effect of location of unbalance in individual components when they are assembled and…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Design and Development of Constant Speed Diesel Engine up to 20 bar BMEP with Inline FIE

Tafe Motors and Tractors Limited-Omprakash Yadav, Piyush Ranjan, Vishal Kumar, Vasundhara Arde, Sanjay Aurora, Remesan Chirakkal
  • Technical Paper
  • 2019-28-2549
Published 2019-11-21 by SAE International in United States
Development trend in diesel engine is to achieve more power from same size of engine. With increase in brake mean effective pressure (BMEP), the peak firing pressure will also increase. The methodology to control the peak firing pressure on higher BMEP is the major challenge. We achieved better SFC with CPCB II emission targets on a constant speed engine. This study involves a systematic approach to optimize combustion parameters with a cost effective and robust Inline Fuel Injection System.This paper deals with the strategies applied and experimental results for achieving the power density of 25kW/lit @ 1500 rpm with Inline FIP by keeping lower Peak firing pressure. Various combustion parameters such as Combustion Bowl Geometry, selection of Turbocharger, Swirl, FIP, Nozzle configuration, EGR flow rate, EGR operation strategy, optimizing injection pressures, start of injection, end of injection, injection duration are optimized. The innovative way of Temperature Input based EGR valve operation is used to meet emission at reduced cost and complexity.This Paper describes Inline Fuel Injection solution for meeting CPCB II emission norms up to…
This content contains downloadable datasets
Annotation ability available