Search
Advanced Search
of the following are true
(
)

Results

Items (211,575)
This document was prepared by the SAE AS-1A2 Committee to establish techniques for validating the Network Terminal (NT) complies with the NT requirements specified in AS5653, Revision B. Note that this verification document only verifies the specific requirements from AS5653 and does not verify all the requirements invoked by documents that are referenced by AS5653. The procuring authority may require further testing to verify the requirements not explicitly defined in AS5653 and in this verification document.
AS-1A Avionic Networks Committee
This document establishes test plans/procedures for the AS5643 Standard that by itself defines guidelines for the use of IEEE-1394b as a data bus network in military and aerospace vehicles. This test specification defines procedures and criteria for testing device compliance with the AS5643 Standard.
AS-1A Avionic Networks Committee
This document was prepared by the SAE AS-1A2 Committee to establish techniques for verifying that Network Controllers (NCs), Network Terminals (NTs), switches, cables, and connectors comply with the physical layer requirements specified in AS5653B. Note that this verification document only verifies the specific requirements from AS5653B and does not verify all of the requirements invoked by documents that are referenced by AS5653B. The procuring authority may require further testing to verify the requirements not explicitly defined in AS5653B and in this verification document.
AS-1A Avionic Networks Committee
This document defines a set of standard application layer interfaces called JAUS Manipulator Services. JAUS Services provide the means for software entities in an unmanned system or system of unmanned systems to communicate and coordinate their activities. The Manipulator Services represent platform-independent capabilities commonly found across domains and types of unmanned systems. At present, twenty-five (25) services are defined in this document. These services are categorized as: Low Level Manipulator Control Services – The one service in this category allows for low-level command of the manipulator joint actuation efforts. This is an open-loop command that could be used in a simple tele-operation scenario. The service in this category is listed as follows: Primitive Manipulator Service Manipulator Sensor Services – These services, when queried, return instantaneous sensor data. Three services are defined that return respectively joint positions, joint velocities, and joint
AS-4JAUS Joint Architecture for Unmanned Systems Committee
The SAE Aerospace Information Report AIR5315 – Generic Open Architecture (GOA) defines “a framework to identify interface classes for applying open systems to the design of a specific hardware/software system.” [sae] JAUS Service (Interface) Definition Language defines an XML schema for the interface definition of services at the Class 4L, or Application Layer, and Class 3L, or System Services Layer, of the Generic Open Architecture stack (see Figure 1). The specification of JAUS services shall be defined according to the JAUS Service (Interface) Definition Language document.
AS-4JAUS Joint Architecture for Unmanned Systems Committee
This document defines a set of standard application layer interfaces called JAUS Autonomous Capabilities Services. JAUS Services provide the means for software entities in an unmanned system or system of unmanned systems to communicate and coordinate their activities. The Autonomous Behaviors Services represent the platform-independent capabilities commonly found in platforms across domains, including air, maritime, and ground. At present five (5) services are defined in this document. These services are: Comms Lost Policy Manager: Detect and recover from loss of communications with a control station Retrotraverse: Return along a path previously traveled Self-Righting: Attempt to recover from a tip over condition Cost Map 2D: Provides information about the current operating environment of the platform Path Reporter: Provides information about the previous or future planned path of the platform
AS-4JAUS Joint Architecture for Unmanned Systems Committee
This SAE Standard was developed to provide a method for indicating the direction of engine rotation and numbering of engine cylinders. The document is intended for use in designing new engines to eliminate the differences which presently exist in industry.
Engine Power Test Code Committee
This specification covers the recommended design, construction, performance and testing requirements for aircraft wheel inflation valves incorporating an inflation pressure gauge which are mounted on the aircraft wheel. These valve/gauge assemblies should be appropriate for use on all aircraft types supported by tubeless tire/wheel assemblies.
A-5C Aircraft Tires Committee
This SAE Aerospace Standard (AS) establishes techniques for validating that a mission store complies with the interface requirements delineated in MIL-STD-1760 Revision E.
AS-1B Aircraft Store Integration Committee
This Minimum Performance Document defines the testing required for wheels, brakes, and wheel and brake assemblies to be used on civil aircraft certified under 14 Code of Federal Regulations (CFR) Part 23, 27, and 29. Compliance with this document is recommended to assure that the equipment supplied will meet the intended design function when installed on aircraft. Compliance with this document does not constitute authorization for installation on an aircraft. The combined recommendations of this document provide an acceptable practice, but not the only practice, for obtaining authorization to apply TSO markings on the equipment.
A-5A Wheels, Brakes and Skid Controls Committee
The scope of the test method is to provide stakeholders including fluid manufacturers, airport operators, brake manufacturers, aircraft constructors, aircraft operators and airworthiness authorities with a relative assessment of the effect of deicing chemicals on carbon oxidation. This simple test is only designed to assess the relative effects of runway deicing chemicals by measuring mass change of contaminated and bare carbon samples tested under the same conditions. It is not possible to set a general acceptance threshold oxidation limit based on this test method because carbon brake stack oxidation is a function of heat sink design and the operating environment.
A-5A Wheels, Brakes and Skid Controls Committee
This Aerospace Information Report (AIR) describes conditions under which freezing (frozen) brakes can occur and describes operating procedures which have been used to prevent or lessen the severity or probability of brake freezing. This document also identifies design features that some manufacturers implement to minimize the occurrence of freezing brakes. This document is not an Aerospace Recommended Practice (ARP) and therefore does not make recommendations based on a consensus of the industry. However, part of this document’s purpose is to describe the design and operational practices that some are using to minimize the risk of frozen brakes. NOTE: The following information is based upon experience gained across a wide-range of aircraft types and operational profiles, and should NOT take precedence over Aircraft Flight Manual or Flight Operations Procedures.
A-5A Wheels, Brakes and Skid Controls Committee
This SAE Aerospace Information Report (AIR) identifies current nondestructive inspection (NDI) methods used to ensure product integrity and maximize "in service" life of the major structural components of aircraft wheel and brake assemblies.
A-5A Wheels, Brakes and Skid Controls Committee
The aircraft landing gear is a complex multi-degree of freedom dynamic system, and may encounter vibration or dynamic response problems induced by braking action. The vibratory modes can be induced by brake and tire-ground frictional characteristics, antiskid operation, brake design features, landing gear design features, and tire characteristics. The impact of this vibration can range from catastrophic failure of critical system components or entire landing gears, to fatigue of small components, to passenger annoyance. It is therefore important that the vibration is assessed during the design concept phase, and verified during the development and testing phases of the system hardware. This SAE Aerospace Information Report (AIR) has been prepared by a panel of the A-5A Subcommittee to present an overview of the landing gear problems associated with aircraft braking system dynamics, and the approaches to the identification, diagnosis, and solution of these problems. All pertinent system
A-5A Wheels, Brakes and Skid Controls Committee
This SAE Aerospace Standard (AS) defines the configuration of aircraft wheel inflation valve assemblies, including required tolerances, materials, and appropriate finishes.
A-5A Wheels, Brakes and Skid Controls Committee
This document recommends supplementary design criteria to enhance endurance and reliability of transport aircraft wheels and brakes.
A-5A Wheels, Brakes and Skid Controls Committee
This SAE Aerospace Recommended Practice (ARP) covers the recommended criteria and performance requirements for the design and installation of land-based aircraft emergency and operational arresting hooks for use on runway arresting systems. Design criteria for fully operational hooks and for carrier-based aircraft hook installations are contained in specification MIL-A-18717.
A-5B Gears, Struts and Couplings Committee
This SAE Aerospace Information Report (AIR) provides information on the parking brake system design for a variety of aircraft including part 23, 25, 27, and 29. The document includes a discussion of key technical issues with parking brakes. This document does NOT provide recommended practices for parking brake system design.
A-5A Wheels, Brakes and Skid Controls Committee
The purpose of this SAE Aerospace Recommended Practice (ARP) is to provide a practical definition of external hydraulic fluid leakage exhibited by landing gear shock absorbers/struts. The definition will outline normal (acceptable weepage) and excessive leakage (unacceptable leakage) of shock absorbers/struts that is measurable. The definition of leakage is applicable to new gear assemblies, refurbished/remanufactured (overhauled) shock absorbers/struts, leakage of shock absorbers/struts encountered during acceptance flights, newly delivered and in-service aircraft. This ARP is intended to provide guidelines for acceptable leakage of landing gear shock absorbers/struts between the ambient temperatures of -65 °F (-54 °C) and 130 °F (54 °C) and to outline the procedure for measuring such leakage. The specific limits that are applied to any particular aircraft shall be adjusted by the aircraft manufacturer before inclusion in the applicable maintenance manual.
A-5B Gears, Struts and Couplings Committee
The purpose of this document is to relate areas where carbon brake technology may differ from traditional steel brake technology in design and performance. Carbon brakes have been used on military aircraft for many years and are now frequently used on newly commercial developed aircraft. This document presents some of the lessons learned.
A-5A Wheels, Brakes and Skid Controls Committee
This specification covers minimum design and test requirements for aircraft tire inflation-deflation equipment for use on all types of aircraft. It shall be the responsibility of the airframe manufacturer to determine the compatibility of the requirement with the applicable aircraft and to specify requirements in excess of these minimums as necessary.
A-5A Wheels, Brakes and Skid Controls Committee
This SAE Aerospace Information Report (AIR) discusses the nature of landing gear stability, describes many common landing gear stability problems, and suggests approaches and methods for solving or avoiding them.
A-5B Gears, Struts and Couplings Committee
The intent of this AIR is twofold: (1) to present descriptive summary of aircraft nosewheel steering and centering systems, and (2) to provide a discussion of problems encountered and “lessons learned” by various airplane manufacturers and users. This document covers both military aircraft (land-based and ship-based) and commercial aircraft. It is intended that the document be continually updated as new aircraft and/or new “lessons learned” become available.
A-5B Gears, Struts and Couplings Committee
The primary focus of this document is to provide information on the impacts hard landings and abnormal load conditions on landing gear and related systems. However, because hard landings potentially affect the entire aircraft, this document also includes information for non-landing gear areas. The document may be considered to be applicable to all types of aircraft. This document does NOT provide recommended practices for hard landing inspections, nor does it provide recommendations on the disposition of damaged equipment. Refer to ARP4915 and ARP5600 for information on dispositions relating to landing gear components or wheels involved in accidents/incidents.
A-5B Gears, Struts and Couplings Committee
This information report provides general guidance for the design considerations, qualification in endurance, strength and fatigue of landing gear using composite components as principle structural elements. The information discussed herein includes the development and evaluation of design data considering: the potential for imbedded manufacturing defects, manufacturing process variations, the component operating environment, potential damage threats in service, rework and overhaul, and inspection processes. This AIR mainly discusses the use of thick composites for landing gear structural components. Considerations and recommendations provided in this AIR may therefore differ greatly from considerations and recommendations found in widely accepted composite design references such as CMH-17 and Advisory Circulars such as AC 20-107(B).
A-5B Gears, Struts and Couplings Committee
This SAE Aerospace Recommended Practice (ARP) provides recommendations on cavity design, the installation of elastomer type spare seals in these cavities, and information surrounding elastomer material properties after contact with typical shock absorber hydraulic fluid(s) or grease. This ARP is primarily concerned with the use of spare seals on shock absorbers where only a single dynamic seal is fitted and in contact with the slider/shock absorber piston at any one time. These shock absorbers typically have a spare (dynamic) seal gland located on the outer diameter of the lower seal carrier. This spare seal gland is intended to house a spare elastomer contact seal. Split Polytetrafluoroethylene (PTFE) backup rings can also be installed in the spare seal cavity. During operation, if the fitted dynamic shock absorber standard seal begins to fail/leak, then the aircraft can be jacked up, allowing the lower gland nut of the shock absorber to be dropped down. The current used dynamic seal
A-5B Gears, Struts and Couplings Committee
This SAE Aerospace Information Report (AIR) advises that some of the chemicals being used to disinfect, de-ice, and clean airplanes can cause corrosion and/or degradation of landing gear components. Landing gear equipment includes shock struts, braces, actuators, wheels, brakes, tires, and electrical components. Some of the chemicals that have been recognized as potentially injurious are identified and recommendations for mitigating damage are presented.
A-5B Gears, Struts and Couplings Committee
A landing gear system comprises the most compelling assembly of engineering skills. Its importance to the successful design of an aircraft can be favorably compared with that of the aircraft's wings and engines. A landing gear system consists of several different engineering disciplines, and is continually in the public eye especially with regard to safety. The primary objective of AIR4846 is to present a record of a variety of interesting gears, gear/aircraft systems and patents, and to discuss wherever possible the lessons learned, and the reasons for the design. Thus, the document is not only a historical account, but a means of recording technical knowledge for the practical benefit of future landing gear designers. Commendable efforts have been made over the years by several individuals to make such recordings, and AIR4846 will make continual reference to them. This applies to all books, papers, or specifications that have the approval of the SAE A-5 Committee. AIR4846 also
A-5B Gears, Struts and Couplings Committee
This document provides recommended practices for the design, development, and verification testing of NWS systems.
A-5B Gears, Struts and Couplings Committee
This SAE Aerospace Recommended Practice (ARP) provides guidance on the definition, development, and establishing a LGIP.
A-5B Gears, Struts and Couplings Committee
CPs are a process that is executed on a critical landing gear (or undercarriage) part, assembly or equipment that if performed incorrectly or omitted would cause: An operational failure of the aircraft; or An unacceptable risk of injury This document identifies CPs that have either caused operational failure or that can be reasonably expected to cause operational failures based on experience. Note that in the interest of brevity, that this document is not intended to be a definitive listing, only an introduction and a consideration of common processes.
A-5B Gears, Struts and Couplings Committee
This document outlines the development process and makes recommendations for total antiskid/aircraft systems compatibility. These recommendations encompass all aircraft systems that may affect antiskid brake control and performance. It focuses on recommended practices specific to antiskid and its integration with the aircraft, as opposed to more generic practices recommended for all aircraft systems and components. It defers to the documents listed in Section 2 for generic aerospace best practices and requirements. The documents listed below are the major drivers in antiskid/aircraft integration: 1 ARP4754 2 ARP4761 3 RTCA DO-178 4 RTCA DO-254 5 RTCA DO-160 6 ARP490 7 ARP1383 8 ARP1598 In addition, it covers design and operational goals, general theory, and functions, which should be considered by the aircraft brake system engineer to attain the most effective skid control performance, as well as methods of determining and evaluating antiskid system performance. For definitions of
A-5A Wheels, Brakes and Skid Controls Committee
This aerospace information report (AIR) provides historical design information for various aircraft landing gear and actuation/control systems that may be useful in the design of future systems for similar applications. It presents the basic characteristics, hardware descriptions, functional schematics, and discussions of the actuation mechanisms, controls, and alternate release systems. The report is divided into two basic sections: 1 Landing gear actuation system history from 1876 to the present. This section provides an overview and the defining examples that demonstrate the evolution of landing gear actuation systems to the present day. 2 This section of the report provides an in depth review of various aircraft. A summary table of aircraft detail contained within this section is provided in paragraph 4.1. The intent is to add new and old aircraft retraction/extension systems to this AIR as the data becomes available. NOTES 1 For some aircraft, the description is incomplete, due to
A-5B Gears, Struts and Couplings Committee
This specification covers definition of landing impact tests which are to be conducted on landing gear assemblies including shock absorbers, suggested instrumentation for the tests and required data of the resulting test report. It is intended to standardize impact test procedures on landing gear shock absorbers and to provide sufficient data to allow evaluation of the design with respect to requirements of MIL-L-8552 and MIL-S-8959 as applicable.
A-5B Gears, Struts and Couplings Committee
The scope of this document is to discuss the differences between electromechanical and proximity position sensing devices (sensor or switch) when used on landing gear. It also contains information which may be helpful when applying either type of technology after the selection has been made. The purpose is to help the designer make better choices when selecting a position-sensing device. Once that choice has been made, this document includes information to improve the reliability of new or current designs. It is not intended to replace recommendations from sensor manufacturers or actual experience, but to provide a set of general guidelines based on historic infromation of what is being used.
A-5B Gears, Struts and Couplings Committee
Items per page:
1 – 50 of 211575